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Abstract—Capturing the gestures of music performers is a
common task in interactive electroacoustic music. The captured
gestures can be mapped to sounds, synthesis algorithms, visuals,
etc., or used for music transcription. Two of the most common
approaches for acquiring musical gestures are: 1) “hyper-instru-
ments” which are “traditional” musical instruments enhanced
with sensors for directly detecting the gestures and 2) “indirect
acquisition” in which the only sensor is a microphone capturing
the audio signal. Hyper-instruments require invasive modification
of existing instruments which is frequently undesirable. However,
they provide relatively straightforward and reliable sensor mea-
surements. On the other hand, indirect acquisition approaches
typically require sophisticated signal processing and possibly
machine learning algorithms in order to extract the relevant infor-
mation from the audio signal. The idea of using direct sensor(s) to
train a machine learning model for indirect acquisition is proposed
in this paper. The resulting trained “surrogate” sensor can then be
used in place of the original direct invasive sensor(s) that were used
for training. That way, the instrument can be used unmodified in
performance while still providing the gesture information that a
hyper-instrument would provide. In addition, using this approach,
large amounts of training data can be collected with minimum
effort. Experimental results supporting this idea are provided in
two detection contexts: 1) strike position on a drum surface and 2)
strum direction on a sitar.

Index Terms—Gesture recognition, machine learning, new inter-
faces for musical expression, surrogate sensors, virtual sensors.

I. INTRODUCTION

T HROUGHOUT history, musical instruments have been
some of the best examples of artifacts designed for in-

teraction. In recent years, a combination of cheaper sensors,
more powerful computers, and rapid prototyping software has
resulted in a plethora of interactive electroacoustic music per-
formances and installations. In many of these performances, tra-
ditional acoustic instruments are blended with computer-gen-
erated sounds and visuals. Automatically sensing the gestures
made by the performer is frequently desired in such interactive
multimedia performances. For example, we might be interested
in the strumming pattern of a guitar player or we might be in-
terested how hard a pianist strikes a chord. This extracted infor-
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mation has been used in several ways including driving inter-
active graphics syncrhonized to the music, having computers or
robots react to the music performed, and to gain a more detailed
quantitative aspects of music performance such as the nuances
of timing.

The extraction of information from musical instruments pro-
vides a fascinating domain to explore ideas of multimedia pro-
cessing beyond the more traditional audio, image, and video
processing that is the currently the dominant focus of multi-
media research. A combination of different sensors can be uti-
lized, and typically their output needs to be further processed by
a combination of digital signal processing and machine learning
techniques to extract useful information. A further challenge is
that the information needs to be extracted causally and in real-
time in order to be utilized in live music performance. Therefore,
an interactive computer-music performance is a great example
of a multimodel human-computer interface in action. The work
presented in this paper grew out of the experiences of the authors
in developing instruments for live interactive human-computer
music performances.

There are two main approaches to sensing instrumental ges-
tures. In indirect acquisition, traditional acoustical instruments
are extended/modified with a variety of sensors such as force
sensing resistors (FSR), and accelerometers. The purpose of
these sensors is to measure various aspects of the gestures of
the performers interacting with their instruments. A variety of
such “hyper-instruments” have been proposed [1]–[3]. How-
ever, there are many pitfalls in creating such sensor-based con-
troller systems. Purchasing microcontrollers and certain sensors
can be expensive. The massive tangle of wires interconnecting
one unit to the next can get failure-prone. Things that can go
wrong include: simple analog circuitry break down, or sensors
wearing out right before a performance forcing musicians to
carry a soldering iron along with their tuning fork. However, the
biggest problem with hyper-instruments is that there usually is
only one version. Therefore, only one performer, typically the
designer/builder, can benefit from the data acquired and utilize
the instrument in performances. Finally, musical instruments,
especially the ones played by professionals, can be very expen-
sive, and therefore, any invasive modification to attach sensors
is bound to be met with resistance if not absolute horror.

These problems have motivated researchers to work on indi-
rect acquisition in which the musical instrument is not modified
in any way. The only input is provided by non-invasive sen-
sors, typically one or more microphones. The recorded audio
then needs to be analyzed in order to measure the various de-
sired gestures. Probably the most common and familiar example
of indirect acquisition is the use of automatic pitch detectors
to turn monophonic acoustic instruments into music instrument
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digital interface (MIDI) instruments. In most cases, indirect ac-
quisition does not directly capture the intended measurement
and the signal needs to be analyzed further to extract the de-
sired information. Frequently this analysis is achieved by using
real-time signal processing techniques. More recently, an addi-
tional stage of supervised machine learning has been utilized in
order to “train” the information extraction algorithm. The disad-
vantage of indirect acquisition is the significant effort required
to develop the signal processing algorithms. In addition, if ma-
chine learning is utilized, the training of the system can be time
consuming and labor intensive.

The main problem addressed in this paper is the efficient and
effective construction of indirect acquisition systems for mu-
sical instruments in the context of interactive media. Our pro-
posed solution is based on the idea of using direct sensors to
train machine learning models that predict the direct sensor out-
puts from acoustical data. Once these indirect models have been
trained and evaluated, they can be used as “surrogate” sensors in
place of the direct sensors. This approach is motivated by ideas
in multimodal data fusion with the slight twist that in our case,
the data fusion is only used during the learning phase. We be-
lieve that the idea of using direct sensors to learn mappings for
indirect acquisition can be applied to other area of multimodal
interaction in addition to musical instruments.

This approach of using direct sensors to “learn” indirect ac-
quisition models has some nice characteristics. Large amounts
of training data can be collected with minimum effort just by
playing the enhanced instrument with the sensors. Once the
system is trained and provided the accuracy and performance
of the learned surrogate sensor is satisfactory, there is no need
for direct sensors or invasive modifications to the instrument.

The traditional use of machine learning in audio analysis
has been in classification where the output of the system is an
ordinal value (for example, the instrument name). As a first
case study of our proposed method, we describe a system for
classifying percussive gestures using indirect acquisition. More
specifically, the strike position of a stick on a snare drum is
automatically inferred from the audio recording. A radio drum
controller is used as the direct sensor in order to train the indi-
rect acquisition. In addition, we explore regression which refers
to machine learning systems where the output is a continuous
variable. One of the challenges in regression is obtaining large
amounts of data for training which is much easier using our
proposed approach. In our experiments, we use audio-based
feature extraction with synchronized continuous sensor data
to train a “surrogate” sensor using machine learning. More
specifically, we describe experiments using the electronic sitar
(E-Sitar), a digitally enhanced sensor-based controller mod-
eled after the traditional North Indian sitar. The case studies
were motivated by the specific needs and knowledge of the
authors during the creation of interactive computer music per-
formances. As our goal has been in addition to research to use
these techniques successfully in live music performance, it is
important to involve trained musicians (which all of the authors
are) that have extensive experience with playing a particular
instrument. For example, the sensor extraction on the E-Sitar
has been used in performance of a sitar player interacting
with a robotic percussionist that is able to vary the rhythmic

accompaniment and follow the expressive timing of the sitar
performer. The drum strike location has been used in live
music performance for changing the parameters of synthesized
percussive sound in a continuous manner. These are only some
of the possibilities afforded by better sensing in the context of
interactive computer music performance.

We believe that the more general idea of “surrogate” sensor
training can be applied to other music instruments and multi-
media contexts and discuss some possibilities in the last section.

II. BACKGROUND

The use of sensors to gather gestural data from a musician
has been used as an aid in the creation of real-time computer
music performance. In the last few years the New Interfaces
for Musical Expression (NIME) conference has been the main
forum for advances in that area. Some representative examples
of such systems are: the Hypercello [1], the digitized Japanese
drum Aobachi [3], and the E-Sitar [2]. All these hyper-instru-
ments still function as acoustical instruments but are enhanced
with a variety of direct sensors to capture gestures of the per-
former. Examples of information measured by the sensors in-
clude: bowing pressure and speed, strike force, and fret location.
That information has been used to drive interactive graphics and
sound, change the parameters of sound synthesis algorithms [4],
and coordinate the human performer with computer generated
sounds and accompaniment in some cases including computer
control music robots [5], [6]. Another interesting application
is the quantitative analysis of music performance. A general
overview of new digital musical instruments including hyper-in-
struments can be found in Miranda and Wandeley [7].

In addition, there has been some research using machine
learning techniques [8] to classify specific gestures based on
audio feature analysis. The extraction of control features from
the timbre space of the clarinet is explored in [9]. Deriving
gesture data from acoustic analysis of a guitar performance is
explored in [10]–[12]. An important influence for our research
is the concept of indirect acquisition of instrumental gesture
described in [12]. In that work, the audio signal generated from
a classical guitar is processed using signal processing to extract
which string of the guitar is played when a particular note is
sounded (the same note can be played on different strings in the
guitar with subtle but noticeable differences in timbre). Gesture
extraction from drums is explored in [13]–[15]. The proposed
algorithms rely on signal processing possibly followed by
machine learning to extract information. Typically the infor-
mation is categorical in nature, for example, the type of drum
sound played (for example, snare, bass drum, or cymbal). In
such approaches, a large number of drum sounds are collected,
labeled manually, and then used with audio feature extraction
to train machine learning models.

In this paper, we address the challenge of collecting large
amounts of training data without needing to manually label
recordings. Direct sensors are used to automatically anno-
tate the recordings. Once the indirect acquisition method has
achieved satisfactory performance, the direct sensors can be
discarded. Collecting large amounts of data becomes simply
playing the instrument. Most existing indirect acquisition
methods make categorical decisions (classification). Using
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regression [16], it is possible to deal with continuous gestural
data in a machine learning framework. However, training re-
gression models requires more data which is much easier using
the proposed approach rather than manual labeling.

The concept of “virtual” sensors typically refers to the cre-
ation of software-based sensors that combine readings from sev-
eral potentially heterogeneous sources to a single measurement
[17]. A simple example would be a position sensor that uses
GPS but switches to more accurate local position sensors when
inside a particular building. The “virtual” sensor essentially ab-
stracts this process into a single position measurement. Fre-
quently the programmer needs to explicitly define the mapping
of the “physical” sensors to the “virtual” sensors.

More recently, machine learning techniques have been used
for a variety of sensor-related tasks for which direct modeling
can either not be used or is difficult to formulate. Artificial
neural networks are a technique frequently utilized for classifi-
cation problems [18], [19] but other approaches such as support
vector machines have also been used [20]. An interesting
extension to using machine learning in sensor applications
is creating “virtual” sensors by utilizing trained “black-box”
models to perform the mapping rather than explicit program-
ming [21]. This is particularly valuable when the underlying
physics are too complex to model while there is plenty of data
to develop/train a “virtual” sensor. Such sensors have many
uses in automotive applications [19].

We use the term “surrogate sensor” to refer to the process of
using a “physical” sensor to train a machine learning model for a
“virtual sensor”. For example, in automotive applications, labo-
ratory-quality expensive sensors can be used to provide ground-
truth for training a “virtual” sensor that takes input from sev-
eral low-grade production-quality on-board sensors [22]. In this
paper, we describe how surrogate sensors can be applied in the
context of acquiring performance information using sensors on
musical instruments. The advantage of using the technology in
a musical context is that the cost of failure is very low compared
to automotive applications: a missed note has much less impact
on the user than a failure of a crash sensor. Surrogate sensors do
not require any modification to the instrument as they operate
only on features calculated from the audio signal captured by
a microphone. Using this approach significantly simplifies the
training process as it does not require any manual labeling and
large amounts of annotated training data can be simply be col-
lected by playing the instrument. In addition, it facilitates adop-
tion by musicians as it does not require any modification to their
musical instrument.

This paper expands on earlier work by the authors in the con-
text of sitar [23] and drum performance [24] by providing a
more complete description of the process of integrating sensors,
digital signal processing, and machine learning using the idea
of “surrogate” sensors. Additional experimental results that in-
clude classification, ordinal regression, and regression tasks are
also reported.

III. SYSTEM OVERVIEW

Fig. 1 shows a schematic diagram of the training process
for surrogate sensors. The process has two phases: training and
performance. In training, the musician plays a instrument that

Fig. 1. nSystem diagram of surrogate sensor lifting. Once training is complete,
the blocks in dotted lines are eliminated.

has been modified with additional direct physical sensors. In
addition, a microphone is used to capture the audio generated
by the instrument. The audio signal is analyzed using digital
signal processing techniques and a compact feature represen-
tation is automatically extracted. The physical sensor readings
are time-aligned with the stream of feature vectors and used
as ground-truth to train machine learning models for mapping
the feature vectors to the desired sensor measurement. Large
amounts of training data can be collected this way as there is
no need for any manual input other than the performer playing
the instrument. This is in contrast to traditional approaches that
rely on manual annotation of the audio signal after acquisition
for creating the ground-truth labeling.

Once the machine learning model achieves satisfactory per-
formance, it can be stored and used for the creation of a sur-
rogate sensor. The surrogate sensor will behave similarly to the
original invasive physical sensor but will operate on the features
extracted from audio. After training, the invasive physical sen-
sors can be removed and the performer can play an unmodified
instrument while still capturing performance information using
the surrogate sensor instead of the physical sensor.

It is important to briefly comment on the generalization of the
surrogate sensor to other contexts. In the most restrictive con-
text, the sensor is used on the exact same instrument and by
the same performer. For the gestures explored in this paper, we
have found that the trained surrogate sensor typically general-
izes well to other performers playing the same instrument. In
terms of generalizing to different particular instruments of the
same type, it depends on the particulars. For example, trained
surrogate sensors generalize well to snare drums that are of the
same type as the one used for training. When the sound of the
instrument is significantly different, even if it is the same instru-
ment, the surrogate sensor does not generalize as well. Another
issue that needs to be briefly discussed is the use of the “sur-
rogate” sensor in music performance where there is a complex
mixture of sounds present. In our performances, we utilize stan-
dard directional microphones that are either close to the instru-
ment being played or part of it. Although there is some leakage
of ambient noise, it does not seem to have an effect on the per-
formance of the audio analysis. Such microphones are almost
always already present in the context of music performance for
recording purposes.

The remainder of the paper is structured as follows:
Section IV describes the specific details of the experimental
setup used for experiments with gesture acquisition for two
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Fig. 2. E-Sitar and thumb sensor.

music instruments: sitar, a North Indian string instrument, and
a regular snare drum. In addition, the audio feature extraction
and learning process used in the experiments is described.
Section V describes the experimental results for these two
case studies and Section VI concludes the paper and describes
directions for future work.

IV. MEASUREMENT SYSTEM CONFIGURATION

A. E-Sitar

The sitar is a 19-stringed, pumpkin shelled, traditional North
Indian instrument. Its bulbous gourd (shown in Fig. 2), cut flat
on the top, is joined to a long necked hollowed concave stem
that stretches three feet long and three inches wide. The sitar
contains seven strings on the upper bridge, and twelve sympa-
thetic strings below. All strings can be tuned using tuning pegs.
The upper strings include rhythm and drone strings, known as
chikari. Melodies, which are primarily performed on the upper-
most string and occasionally the second copper string, induce
sympathetic resonances in the twelve strings below. The sitar
can have up to 22 moveable frets, tuned to the notes of a Raga
(the melodic mode, scale, order, and rules of a particular piece
of Indian classical music) [25].

It is important to understand the traditional playing style of
the sitar to comprehend how our controller captures its hand ges-
tures. Our controller design has been informed by the needs and
constraints of the long tradition and practice of sitar playing.
The sitar player uses his left index finger and middle finger, as
shown in Fig. 3, to press the string to the fret to play the desired
swara (note). The frets are elliptically curved so the string can
be pulled downward, to bend to a higher note. This is how a per-
former incorporates the use of shruti (microtones) which is an
essential characteristic of traditional classical Indian music. On
the right index finger, a sitar player wears a ring like plectrum,
known as a mizrab. The right hand thumb, remains securely on
the edge of the dand (neck) as shown in Fig. 3, as the entire right
hand gets pulled up and down over the main seven strings, let-
ting the mizrab strum the desired melody. An upward stroke is
known as Dha and a downward stroke is known as Ra [25]. The
two main gestures we capture using sensors and subsequently
try to model using audio-based analysis are: 1) the pitch/fret
position and 2) the mizrab stroke direction.

Fig. 3. E-Sitar and thumb sensor.

The E-Sitar was built with the goal of capturing a variety of
gestural input data. A more detailed description of audio-based
gesture extraction on the E-Sitar including monophonic pitch
detection can be found in [16]. A variety of different sensors
such as fret detection using a network of resistors are used com-
bined with an Atmel AVR ATMega16 microcontroller for data
acquisition. Fig. 4 shows a schematic diagram of the resistor
network used to detect the fret played. The fret detection oper-
ates by a network of resistors attached in series to each fret on
the E-Sitar. Voltage is sent through the string, which establishes
a connection when the string is pressed down to a fret. This re-
sults in a unique voltage based on the amount of resistance in
series up to that fret. The voltage is then calculated and trans-
mitted using the MIDI protocol.

The direct sensor used to deduce the direction of a mizrab
stroke is a force sensing resistor (FSR), which is placed directly
under the right hand thumb, as shown in Fig. 2. The thumb never
moves from this position while playing; however, the applied
force varies based on the mizrab stroke direction. A Dha stroke
(upward stroke) produces more pressure on the thumb than a
Ra stroke (downward stroke). We send a continuous stream of
data from the FSR via MIDI, because this data is rhythmically
in time and can be used compositionally for more than just de-
ducing pluck direction. A vector of audio features is extracted
and the values of the FSR sensor are fused and used to train the
surrogate sensor using a regression model. More details about
the experiments are provided below.

B. E-Snare

For this project, the position of the drum strike is the pri-
mary gesture for recognition. With an acoustic drum, the timbre
changes as the strike moves from the center of the drum to the
edge. Drummers can utilize this change in timbre when playing
to create different sound textures. Very few electronic percus-
sion devices include this feature, and thus lower the expressive
potential for drummers. Strike position is measured as the dis-
tance from the center to the edge of the drum surface. Two dif-
ferent drum surfaces were employed for this process: an acoustic
snare drum and an electronic drum pad.

The acoustic snare drum is a standard drumset component
that has a 14-inch diameter and metal wires (snares) attached
to the underside that vibrate against the drum. The snares may
be disengaged to produce a more traditional drum sound. The
acoustic snare drum was recorded using a Shure SM-57 micro-
phone placed at the edge of the drum.

Electronic drum pads are components of electronic drumsets.
The pad used was had a diameter of 8 inches and was made with
a mesh drumhead to reduce the acoustic sound. The electronic
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Fig. 4. E-Sitar circuit.

Fig. 5. Drum pad on radio drum surface.

drum pad is manufactured with a piezoelectric microphone at-
tached to the underside of the head. The microphones on the
drums were connected to a Mark of the Unicorn audio inter-
face operating at CD quality sound (16-bits resolution with a
44 100 kHz sampling rate). The audio interface was connected
to a computer running the analysis software.

The direct sensor used for training is the Radio Drum [26],
which is based on capacitance sensors. It can detect the x,y,z
positions of two drum sticks in 3-D space. This allowed us to
place the surface of the Radio Drum under the snare drum or
electronic drum pad and still be able to measure the stick posi-
tion (see Fig. 5). Using the radio drum, quantized position was
measured along the X and Y axes of the surface using 7-bits res-
olution and transmitted using the MIDI standard as integers be-
tween 0 and 127. For each test, the radio drum was calibrated to
ensure proper accuracy. It is important to note that even though
the training setup might require calibration, the trained “surro-
gate” sensor does not.

The electronic drum pad has a diameter of 8 inches (20.3
cm). The drum pad was placed in the center of the Radio Drum
pad which returns approximately 20 values across that radius
(10.17 cm) providing a measuring resolution of nearly 0.5 cm.
The goal of the surrogate sensor is to provide the same resolution
for estimating the drum strike position but only based on the
analyzed acoustic output captured by the microphone.

C. Audio Feature Extraction

The feature set used in this paper is based on standard features
used in isolated tone musical instrument classification, music,
and audio recognition [27]. Our goal is not to find the optimal
set of audio features for the proposed tasks. One of the nice prop-
erties of approaches for musical gesture acquisition that utilize
machine learning compared to pure digital signal processing ap-
proaches is that the features utilized can be noisy, incomplete,
redundant, and still provide useful information. Therefore, the
features we use are standard and only slightly adapted for the
particular problems we examine. We believe that our “surro-
gate” sensor approach can be used with any “reasonable” set
of audio features.

Ideally the size of the analysis and texture windows should
correspond as closely as possible to the natural time resolution
of the gesture we want to map. In our experiments, we have
looked at how these parameters affect the desired output. In ad-
dition, the range of values we explored was determined empir-
ically by inspecting the data acquired by the sensors. The total
latency of the system is determined by several factors, mainly
the latency of audio input/output of the underlying operating
system as well as the latency of the analysis window for feature
extraction, and is typically in the range of 20 to 50 ms. Although
this is adequate for many musical gestures of interest, there are
cases where it would not be sufficient like the detection of fast
drum hits. At the same time, this is an inherent limitation of any
non-invasive audio-based approach.

For the E-Sitar experiments, it consists of four features com-
puted based on the short time Fourier transform (STFT) mag-
nitude of the incoming audio signal. It consists of the Spectral
Centroid, Rolloff, and Flux as well as RMS energy which are de-
scribed in more detail below. The features are calculated using
a short time analysis window with duration 10–40 ms. In addi-
tion, the means and variances of the features over a larger texture
window (0.2–1.0 s) are computed resulting in a feature set with
8 dimensions. The larger texture window captures the dynamic
nature of spectral information over time, and it was a necessary
addition to achieve better results in mapping features to ges-
tures.

For the drum experiments the analysis window is 40 ms (no
texture window) and the features used were: Spectral Centroid,
Rolloff, Kurtosis, and Skewness as well as mel-frequency cep-
strum coefficients (MFCCs). A preprocessing step of silence re-
moval and onset detection ensure that features are only calcu-
lated once for each drum hit. The analysis window is located
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so that it captures most of the energy of the hit. The Marsyas1

audio analysis and synthesis framework was used for the feature
extraction and direct sensor acquisition and alignment with the
audio features [28].

The features calculated for each analysis window indexed by
are as follows.
1) Temporal Centroid: Temporal centroid is the center of

gravity of the time domain representation of the signal as given
by

(1)

where is the signal to be evaluated, is the number of sam-
ples, and is the number of samples to be evaluated.

2) RMS: RMS, root mean squared, is a measurement of am-
plitude that returns the value as given by

(2)

See 1) for explanation of symbols.
3) Spectral Centroid: Spectral centroid returns the center of

gravity of the magnitude spectrum as given by

(3)

where is the spectrum of the signal given by an FFT cal-
culation, and is the number of analysis frames (determined
by FFT size).

4) Spectral Flux: Spectral flux measures the amount of
local change over time in the frequency domain. It is defined by
squaring the difference between normalized magnitudes in the
frequency domain of frame and . If and
are defined by the normalized spectrum magnitude of frame
and , then the spectral flux is given by

(4)

It should be noted that magnitudes are normalized by dividing
each value in every frame by the RMS value of that frame [29].

is calculated for each frame and then averaged over time in
order to yield one value for spectral flux.

5) Spectral Rolloff: Spectral rolloff is another feature that
describes the spectral shape [29]. It is defined as the frequency

below which 85% of the magnitude of the spectrum is con-
centrated. If is the magnitude of the spectrum, then the
spectral rolloff is given by

(5)

1http://marsyas.sourceforge.net.

6) Spectral Skewness: Spectral skewness is a third-order mo-
ment that returns the skewness of the spectrum as given by

(6)

where is the magnitude of the spectrum of the signal, is the
mean of the signal, and is the spectrum distribution standard
deviation.

7) Spectral Kurtosis: Spectral kurtosis is a fourth-order mo-
ment that examines how outlier prone the spectrum is. A spec-
trum with normal distribution will have a spectral kurtosis of
3. The function in this experiment conforms to the convention
where three is subtracted from the kurtosis so that a spectrum
with normal distribution will have a spectral kurtosis of 0:

(7)

8) Mel-Frequency Cepstrum Coefficients: MFCC are a
product of two distinct stages of operations. First, the cepstrum
of the signal is calculated, which is given by taking the log of
the magnitude spectrum. This effectively smooths the spectral
content of the signal. Second, the spectrum is divided into 13
bands based on the mel scale, which is a scale based on human
perception of pitch [30].

This feature returned a set of coefficients for each FFT frame
of the signal that was analyzed. A 256-point FFT size was used
providing 13 coefficients for each FFT frame.

D. Classification and Regression

Classification refers to the prediction of discrete categorical
outputs from real-valued inputs. A variety of classifiers have
been proposed in the machine learning literature [8] with dif-
ferent characteristics in respect to training speed, generalization,
accuracy, and complexity. The main goal of the paper is to pro-
vide evidence to support the idea of using direct sensors to train
surrogate sensors in the context of musical gesture detection.
Therefore, experimental results are provided using a few repre-
sentative classification methods. Regression refers to the predic-
tion of real-valued outputs from real-valued inputs. Multivariate
regression refers to predicting a single real-valued output from
multiple real-valued inputs. A classic example is predicting the
height of a person using their measured weight and age. There
are a variety of methods proposed in the machine learning [8]
literature for regression. Ordinal regression is a specialized form
of regression where the predicted output consists of discrete la-
bels that are ordered. For example, when predicting the strike
position in relation to the center of a drum, it can be either a con-
tinuous value (regression) or an ordinal value with values such
as center, middle, and edge (ordinal regression). Ordinal regres-
sion problems can be treated as classification problems that do
not assume order among the labels, but there are also special-
ized techniques.

For some of the experiments described below, we use linear
regression where the output is formed as a linear combination
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of the inputs with an additional constant factor. Linear regres-
sion is fast to compute and therefore useful for doing repetitive
experiments for exploring different parameter settings. We also
employ a more powerful back propagation neural network [8]
that can deal with nonlinear combinations of the input data. The
neural network is slower to train but provides better regression
performance. Finally, the M5 prime decision tree-based regres-
sion algorithm was also used [31]. The performance of regres-
sion is measured by a correlation coefficient which ranges from
0.0 to 1.0 where 1.0 indicates a perfect fit. In the case of gestural
control, there is significant amount of noise and the direct sensor
data does not necessarily reflect directly the gesture to be cap-
tured. Therefore, the correlation coefficient can mainly be used
as a relative performance measure between different algorithms
rather than an absolute indication of audio-based gestural cap-
turing. The automatically annotated features and direct sensor
labels are exported into the Weka2 machine learning framework
for training and evaluation [32]. For evaluation and to avoid
over-fitting the surrogate sensors, we employ a 50% percentage
split where half the collected data is used for training and the re-
maining is used for testing. This ensure pairs of correlated fea-
ture vectors that are close together in time do not get split into
training and testing.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results of how the
idea of surrogate sensors can be used in the context of musical
gesture acquisition in two concrete case studies: predicting from
the audio signal thumb pressure and fret location in the E-Sitar
as well as the strike position in an acoustic snare drum and
electronic drum pad. Although a “surrogate” sensor setup re-
quires much less manual involvement than audio annotation, it
still takes some musician time to train. In the following experi-
ments, we have chosen to utilize a reasonable amount of training
data that provides good performance without tiring out the per-
former.

A. E-Sitar Results

The goal of the experiments with the E-Sitar was to explore
the idea of using “surrogate” sensors for capturing the fret and
thumb data for sitar performance. We show results from two
experiments. The first experiment used limited data, a single
player, and a subset of the audio features described above and is
reproduced from [23]. Although our current version achieves
slightly better results than the ones reported in our previous
work [23] for the first experiment, we still report the previous
results as the conclusions about the choice of parameters remain
the same.

For the second experiment, three sitar players performed two
sets of data. Our first data set was designed to record a player’s
individual performance characteristics during disciplined prac-
tice exercises. We chose two central exercises from the vast lit-
erature of classical North Indian practice methods [33]: Bol pat-
terns and Alankars. Bol patterns are specific patterns of da (up
stroke), ra (down stroke), and diri (up stroke and then down
stroke in rapid succession), which are explicitly used in sitar

2http://www.cs.waikato.ac.nz/ml/weka/.

TABLE I
EFFECT OF ANALYSIS WINDOW SIZE

TABLE II
REGRESSION ON SITAR THUMB DATA

practice/training, as well as in performance. Alankars refer to
scalar patterns that can be modally transposed; they form the
basis of many musical ornaments and are also often used for
melodic development. For our second data set, each performer
played a fixed composition. As in the exercises, the composi-
tion makes specific use of both the left and right hands, but with
more room for ornamentation, microtiming, and other expres-
sive nuances. For the experiments reported in this paper, both
datasets were combined. All data from all sensors are sampled
at 100 Hz and stored as uncompressed wav files at a 44 100 Hz
sampling rate. A metronome was also used, allowing for more
highly controlled and synchronous experiment set up.

Our first experiment was to analyze the effect of the anal-
ysis window size used for audio feature extraction for predicting
thumb pressure from audio analysis of the microphone input.
Table I shows the results. The texture size remained constant at
0.5 s and linear regression was used. The correlation coefficient
for random inputs is 0.14. It is apparent based on the table that
an analysis window of length 256 (which corresponds to 10 ms)
achieves the best results. It can also be seen that the results are
significantly better than chance. We used this window size for
all the following experiments. The low correlation scores are
due to smaller amounts of training data and a reduced feature
set used in the initial conference paper [23].

Table II shows the correlation coefficients for different
types of regression algorithms for predicting thumb pressure
from acoustic analysis of the microphone input. These results
have not been reported previously. The obtained correlation
coefficients are quite good especially for certain combinations
of algorithms and players. The last row shows the results of
using data from all three players and indicates that the trained
“surrogate” sensors can be generalized to more than one player
without significantly losing classification accuracy. It is impor-
tant to note that in most cases, we are interested in derivative
information from the “surrogate” sensor such as detecting
up-strokes and down-strokes. Therefore, even lower correlation
coefficients are adequate for our purposes.

Table III shows the correlation coefficients for different types
of regression algorithms for predicting the fret from acoustic
analysis of the microphone input. These results have not been
reported previously. The obtained correlation coefficients are
quite good especially for certain combinations of algorithms
and players. This is a particularly interesting example as it es-
sentially performs a form of discrete pitch detection based on a
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Fig. 6. Regression results for predicting drum strike position using a surrogate sensor. The x-axis is the strike index and the y-axis is the predicted regression output
corresponding to distance from the center scaled to return values in the same range as the radio drum. (a) RadioDrum input. (b) Surrogate sensor. (c) Surrogate
sensor with discrete classes.

TABLE III
REGRESSION ON SITAR FRET DATA

TABLE IV
REGRESSION USING OTHER PLAYERS FOR TRAINING SET

supervised learning without any “prior” knowledge about what
pitch is.

Table IV shows the correlation coefficients where each clas-
sifier is trained on the data of two players and used to predict
the sensor data of the remaining player. This form of three-fold
cross-validation demonstrates that “surrogate” sensors gener-
alize across different players and is not tied to a specific per-
former. Each classifier receives over 10 000 feature vectors to
train. The best results of the study are shown in this graph with
the M5 classifier on player 3 achieving a correlation coefficient
of 0.9856.

B. E-Snare

The third author completed a Master’s thesis [34] on the topic
of indirect acquisition of snare drum gestures. In this thesis,
1260 samples were collected with three drums and three expert
players. The process of collecting and processing the training
data took nearly a week of manual labor. Using the method de-
scribed in this paper, the same process took under an hour.

A classically trained percussionist was used for data collec-
tion, and no pre-processing or post-processing of the classifi-
cation results was performed. In each of the experiments, un-
less explicitly mentioned, the hits were regularly spaced in time.
For each hit, the radial position was measured and the hit was
labeled as either “edge” or “center” using thresholding of the
Radio Drum input. Audio features are also extracted in real-time

TABLE V
PERCENTAGES OF CORRECTLY CLASSIFIED DRUM PAD

HITS (CENTER, HALFWAY, OR EDGE)

using input from a microphone. The features and sensor mea-
surements are then used for training classifiers. The setup can
be viewed in Fig. 5.

In the first experiment, the electronic drum pad was hit in
the center and at the edge. One thousand samples of each strike
location were captured and used for classification. Fig. 6(a)
shows a graph of the MIDI data captured by the Radio Drum
for each strike. Fig. 6(b) shows a graph of the predicted output
from a PACE regression classifier. The result was a correlation
coefficient of 0.8369 with an absolute error of 2.3401 and a
mean squared error of 2.9784. The graph clearly shows enough
separation between the two classes. The data was then divided
into two symbolic classes: Center and Edge. The data was run
through the PACE regression classifier using the mean of the
Radio Drum input for each class. The results were slightly
improved—a correlation coefficient of 0.8628 with an absolute
error of 2.0303 and a mean squared error of 2.6758.

The error achieved in the regression tests suggests that the
algorithm has an accuracy of approximately 1 cm. Each MIDI
value provided by the Radio Drum corresponds to approxi-
mately 0.5 cm and with an error of approximately 2, depending
on the algorithm, this leads to a worst-case error of 1 cm. There-
fore, even though the trained “surrogate” is not as accurate as
the Radio Drum input, it still provides enough resolution to
discriminate between center and edge easily.

Table V shows classification results for predicting whether
a mesh electronic drum pad was hit in the center, halfway, or
the edge. As can be seen, excellent classification results can be
obtained using the surrogate sensor approach. A total of 348
drum hits were used for this experiment.

Table VI shows classification results for predicting whether
an acoustic snare drum was hit in the center or the edge. The
Snares, No Snares rows are calculated using approximately
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TABLE VI
PERCENTAGES OF CORRECTLY CLASSIFIED SNARE DRUM HITS

TABLE VII
RADIO DRUM REGRESSION FROM WITH 1057 INSTANCES

MOVING FROM CENTER TO EDGE

1000 drum hits with the snares engaged/not engaged. All the
results are based on ten-fold cross-validation. The trivial ZeroR
classifier is used as a baseline. The following classifiers are
used: Naive Bayes (NB), Multi-Layer Perceptron (MPL), Multi-
nomial Logistic Regression (MLR), and Support Vector Ma-
chine trained using sequential minimal optimization (SMO).
The results are consistent between different classifier types and
show that indirect acquisition using audio-based features trained
using direct sensors is feasible. The Improvisation row is cal-
culated using 200 drum hits of an improvisation rather than the
more controlled input used in the other cases where the percus-
sionist was asked to alternate regularly between hitting the edge
and the center of the drum. Even though the results are not as
good as the cleaner previous rows, they demonstrate that any
performance can potentially be used as training data. The main
reason that the results are lower in the improvisation case is that
there is more noise in the ground truth acquired by the radio
drum sensors as the player is less precise when hitting the drum.
The use of patterned input constraints the performer to some ex-
tent as it requires a specific calibration phase but has the poten-
tial of improved performance. In practice, we have used both
approaches depending on the specific requirements of the par-
ticular music performance.

Ordinal regression [35] was computed for all tests to eval-
uate any difference. Tracking of strike position is a candidate
for ordinal regression because the classes are ordered. Marginal
improvements on some classifiers were obtained when ordinal
regression was applied (see Table V).

An experiment was conducted to train a regression classifier
using the Radio Drum as the direct sensor. Data was collected
by playing on the drum moving gradually from edge to center
and back to edge for a total of 1057 strikes (see Table VII). This
experiment illustrates the “surrogate” sensor in the intended ap-
plication of rapid data collection and training of a classifier.

To verify the effectiveness of the features used for classifi-
cation, an experiment was conducted to progressively add fea-
tures. The feature vector was reduced to one element and then
increased until all 17 features were included (see Fig. 7). The
plot shows an increasing line as features are added back into the
vector and the correlation coefficient increases.

Fig. 7. Effect of more features to the correlation coefficient in drum regression.
The y-axis is the correlation coefficient and the x-axis is the discrete feature
index.

VI. DISCUSSION AND FUTURE WORK

In this paper, we apply the concept of a surrogate sensor to
“train” machine learning model based on audio feature extrac-
tion for indirect acquisition of music gestures. Once the model
is trained and its performance is satisfactory, the direct sen-
sors can be discarded. Large amounts of training data for ma-
chine learning may be collected with minimum effort just by
playing the instrument. In addition, the learned indirect acqui-
sition method allows capturing of nontrivial gestures without
modifications to the instrument. We believe that the idea of using
direct sensors to train indirect acquisition methods can be ap-
plied to other area of interactive media and data fusion.

In the future, more features will be added to the system and
a study of the effectiveness of various features will be con-
ducted. We also plan to explore the application of the “surro-
gate” sensor concept to other musical instrument gesture acqui-
sition scenarios. Two specific examples we plan to explore are
detection of string played in the violin and of type of mouthpiece
in woodwinds. In both cases, both direct sensing approaches as
well as indirect audio-based approaches have been proposed in
the literature and can be combined using a surrogate sensor ap-
proach.

Creating tools for further processing the gesture data to re-
duce the noise and outliers is another direction for future re-
search. Another eventual goal is to use these techniques for tran-
scription of music performances. Currently, this system is used
regularly in performance by the first two authors.
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