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Musical Instrument Classification Using
Individual Partials
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Abstract—In a musical signals, the spectral and temporal con-
tents of instruments often overlap. If the number of channels is at
least the same as the number of instruments, it is possible to apply
statistical tools to highlight the characteristics of each instrument,
making their identification possible. However, in the underdeter-
mined case, in which there are fewer channels than sources, the
task becomes challenging. One possible way to solve this problem
is to seek for regions in the time and/or frequency domains in
which the content of a given instrument appears isolated. The
strategy presented in this paper explores the spectral disjointness
among instruments by identifying isolated partials, from which a
number of features are extracted. The information contained in
those features, in turn, is used to infer which instrument is more
likely to have generated that partial. Hence, the only condition for
the method to work is that at least one isolated partial exists for
each instrument somewhere in the signal. If several isolated par-
tials are available, the results are summarized into a single, more
accurate classification. Experimental results using 25 instruments
demonstrate the good discrimination capabilities of the method.

Index Terms—Feature extraction, partialwise instrument classi-
fication, spectral disjointness, underdetermined mixtures.

I. INTRODUCTION

T HE identification of the instruments that compose a mu-
sical signal has received increasing attention in the last

years. Such an interest is fed by the potential benefits that an
accurate instrument classifier can bring to other digital audio
applications. In particular, musical genre classification can be
greatly improved if the instruments present in a given song are
known, since this information can be used to narrow down the
set of potential musical genres. Sound source separation algo-
rithms can also explore such information, particularly if they
deal with underdetermined signals. In this case, the knowledge
about the instruments can be used to create instrument-specific
rules to improve the quality of the sound source separation.

Early work in the area was mainly devoted to the identifi-
cation of instruments in monophonic signals. This problem is,
in general, less challenging than the polyphonic case, since the
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instrument to be classified is isolated from the interference of
any other sound source. Most of those proposals deal with gen-
eral instruments [1]–[11], while a few others deal with specific
cases, like classification of woodwinds [12], [13] and discrimi-
nation between piano and guitar [14].

In the last years, a number of strategies capable of dealing
with polyphonic musical signals have been proposed. Most of
them have some important limitations.

— Limited number of instruments: some of the methods pro-
posed in the literature only work and/or were only tested
for a small (six or less) set of instruments (e.g., [15]–[22]).

— Low accuracy: in some cases the accuracy is below 50%
even considering few instruments (e.g., [19], [23]).

— Instrument combinations set a priori: in this case, the
strategies try to classify the signals according to prede-
fined combinations of instruments; hence, they fail if the
mixture has a combination of instruments that was not
considered in the training (e.g., [24], [25]).

— Polyphony limited to duets: some strategies can only deal
with two simultaneous instruments (e.g., [26], [27]).

Thus, despite the clear advancements achieved in the last
years, there are still many limitations that prevent instrument
identification tools to be more widely used. This paper presents
a simple and reliable strategy to identify instruments in poly-
phonic musical signals that overcomes some of the main limi-
tations faced by its predecessors. The identification uses a ma-
jority decision based upon pairwise comparisons of instrument
likelihoods. A related but more complex approach was used by
Essid et al. [5] to classify solo musical phrases. The method
presented here is basically a system in which majority rules are
successively applied, as briefly described in the following.

In real musical signals, simultaneous sources (instruments
and vocals) normally have a high degree of correlation and
overlap both in time and frequency, as a result of the underlying
rules normally followed by western music (e.g., notes with
integer ratios of pitch intervals). This can make the identifi-
cation of instruments challenging. However, one can expect
to find at least some unaffected partials throughout the signal,
which can be explored to provide cues about the corresponding
instrument. As a result of such an observation, the proposed al-
gorithm extracts features individually for each partial that does
not collide with any other partial (isolated partials). Each pair of
instruments is characterized by a particular set of nine features,
selected from a complete set of 34 features. Each partial is
identified with one of the pair of instruments using a linear
classifier. If such a feature is greater than a given threshold,
it represents a certain instrument; otherwise, it represents the
other one. A first majority rule is applied by summarizing the
results of the nine features; as a result, each pair of instruments
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will have a winner associated to that particular partial. The
instrument that is represented more times in the previous set
of winners is chosen as the label for the partial. The results
are then summarized along all isolated partials related to a
given note, which receives the label of the winner instrument.
The summarization of the results along the entire signal is
also possible because, as in a musical signal an instrument is
likely to play several notes, there will be several identification
instances that may provide stronger evidence of the presence of
a given instrument. In this paper, an instrument is considered to
be part of a musical signal if it appears in more than 5% of the
duration of the entire signal. Such a value is arbitrary, as this
is a parameter that can be freely set according to the intended
purpose.

As a result of the above-mentioned characteristics, the
strategy is able to deal with polyphonies of any order, provided
that at least one partial of each instrument does not suffer
interference from other instruments.

The method was tested with 25 different instruments of var-
ious types. Percussion instruments were not included because
the method is currently unable to deal with nonharmonic sounds.
Tests were also performed using actual recordings to determine
how the method performs under real-world conditions. Experi-
mental results reveal that the method’s performance is compa-
rable to the state-of-the-art of instrument recognition.

The paper is organized as follows. Section II presents the data
preprocessing. Section III describes all steps of the algorithm.
Section IV presents the experiments and corresponding results.
Finally, Section V presents the conclusions and final remarks.

II. PREPROCESSING

The preprocessing steps described in the following are fairly
standard and have been shown to be adequate for supporting the
algorithm.

A. Adaptive Frame Division

In the first step, the algorithm divides the signal into frames.
The best procedure here is to set the boundaries of each frame
at the points where an onset [28], [29] (new note, instrument, or
vocal) occurs, so the longest homogeneous frames are consid-
ered. Although the system includes the onset detector proposed
by Zhou et al. [30], the main tests presented in Section IV were
performed assuming the onsets to be known. This was done be-
cause, to accurately measure the specific performance of the
novel part of the proposed instrument identification method, it
was necessary to guarantee that all errors are exclusively due
to it. However, since it is also important to know how the com-
plete system performs, a study about the effects of onset mis-
placements on the accuracy of the algorithm is presented in Sec-
tion IV-B. Additionally, the tests with real recordings presented
in Section IV-F were performed using the complete system,
which includes the onset detector.

B. Identification of Isolated Partials

As commented before, one of the first steps of the algorithm
is to extract features from isolated partials—the ones that do not
collide with any other. The identification of those partials relies

Fig. 1. Example of inharmonicity.

on two parameters: the number of simultaneous sound sources
in the frame, and the respective fundamental frequencies. In
the proposed system, those parameters are estimated using the
strategies proposed in [31] and [32], respectively. The observa-
tions made in Section II-A also apply here: the main tests were
performed assuming those parameters to be known in order to
avoid cascaded errors. A more complete picture is provided by a
study about the impact of fundamental frequency (F0) misesti-
mates (see Section IV-C), and by the tests with real recordings.

The positions of the partials corresponding to each source
are then determined. The position of a partial, in the context of
this work, refers to the central frequency of the band expected
to be dominated by that partial. Simply taking multiples of F0
sometimes works, but the inherent inharmonicity [33], [34] of
some instruments may cause this approach to fail, especially
if one needs to take several partials into consideration. Fig. 1
shows an example of the effects of inharmonicity, where the
light lines represent the positions of the partials if there was
no inharmonicity, and the dark lines represent the actual posi-
tions. As can be seen, the values begin to differ considerably
as higher harmonics are considered. To make the estimation of
each partial frequency more accurate, the following procedure
was adopted for each F0.

1) The discrete Fourier transform (DFT) is calculated for the
frame under analysis, from which the magnitude spectrum

is extracted. The DFT has the same length as the frame,
a rectangular window is applied, and there is no overlap
between the frames.

2) The ideal position of the current partial is made equal
to , with .

3) The adjusted position of the current partial is given by
the highest peak in the interval of ,
where is the search width. This search width
contains the correct position of the partial in nearly 100%
of the cases; a broader search region was avoided in order
to reduce the chance of interference from other sources.

A partial is used in the next steps of the algorithm if there is no
other partial whose position is within the interval

, and if it has at least 1% of the energy of the most energetic
partial. In some cases, no partial satisfies those conditions, in
which case the corresponding instrument will not be classified.
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C. Partial Filtering

The isolated partials identified in the previous step are sepa-
rated by means of a filter. In real signals, the bandwidth of a par-
tial depends on its frequency modulation and amplitude modula-
tion rates, as well as on the amplitudes and reverberation, which
in turn depend on instrument type, environment, and other fac-
tors. Therefore, a filter with a narrow pass-band may be appro-
priate for some kinds of sources, but may ignore relevant parts
of the spectrum for others. On the other hand, a broad pass-band
will certainly include the whole relevant portion of the spectrum,
but may also include spurious components resulting from noise
and even neighbor partials. Experiments have indicated that the
most appropriate band to be considered around the peak of a par-
tial is given by the interval ,
where is the frequency of the partial under analysis, and
and are the frequencies of the closest partials with lower
and higher frequencies, respectively.

The partials are separated using the overlap-add method [35].
First, the frame under analysis is divided into sub-frames, whose
length is such that is a power of two, where is the
filter length as defined below. The (Hamming) window method
[36] is used to dynamically design a new FIR filter for each par-
tial. The filters must meet two requirements: the cutoff frequen-
cies must match the edges of the interval presented above, and
the cutoff slope must be sharp enough to block at least 99%
of the energy belonging to any other partial. The first require-
ment aims to guarantee that the pass-band will be wide enough
to include all relevant content even in cases in which the cen-
tral frequencies of the partials vary significantly, and the second
requirement aims to avoid that inconsistent data be fed to the
rest of the algorithm. Several tests were performed to deter-
mine which is the lowest filter order that meets those require-
ments. The ideal filter order was found to be inversely propor-
tional to the bandwidth of the pass-band (bw), and is given by
500 000/bw. This may result in a rather high filter order (the
highest order found in the tests was 12 500), but a relatively
low computational complexity is still achieved by employing
the overlap-add method.

III. THE ALGORITHM

Fig. 2 shows the basic structure of the algorithm; each num-
bered part is described in the following subsections.

A. Feature Extraction

After the partials are separated (step 1 in Fig. 2), 34 features
are extracted from each one of them. Most of the features were
implemented based on [37] and [38], slightly modified to be ex-
tracted in a partialwise basis. Some of the tested features were
original. For details about the feature calculation, see the Ap-
pendix.

The method proposed here is based on a pairwise approach,
in which the classification of each partial is performed for every
possible pair of instruments. Since 25 instruments are consid-
ered here, there are 300 possible combinations of two instru-
ments. Nine features from the whole set of 34 are then associ-
ated to each pair of instruments (step 2 in Fig. 2). The features
that represent each pair were selected from the whole set using
the procedure suggested by Deng et al. [39]. Such a procedure

Fig. 2. Basic structure of the algorithm.

searches for the features that best correlates with the dataset it
should represent and, at the same time, tries to eliminate re-
dundant features, thus picking a subset of the original features.
Normally, this would result in a different number of features
for each pair. However, experiments revealed that the voting
system and majority rules to be applied in the following work
better if nine features are considered. A list with the features
used for each pair of instruments can be found in the address
http://opihi.cs.uvic.ca/music_instrument_featuresTASLP.pdf.

B. Classification Scheme

In the next steps, successive majority rules are applied. The
first and most basic classification is given by individual features
within each pair of instruments. This first classification consists
of two steps.

1) The fundamental frequency of the source is compared to
the normal frequency range of both instruments. If the F0
is outside both ranges, there is no winner instrument; if it
is within the range of only one of the instruments, such
an instrument is automatically taken as the winner; if it is
within both ranges, the second step takes place.

2) A simple linear discrimination is applied. If the value of
the feature is larger than a given value, it represents an
instrument, otherwise it represents the other one. Those
threshold values were determined through experiments
over the training set. This simple approach yielded to
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good results in comparison with other discrimination
methods—it achieved an accuracy of 63.1%, against
55.5% and 64.1% using a single perceptron and support
vector machines (SVM), respectively. Although the results
using SVM were slightly better, tests using a different
database revealed that the SVM actually resulted in a
poorer generalization capacity—in this case, the SVM
achieved an accuracy of 57.9%, against 59.7% achieved
by the proposed approach. Although there is no definitive
explanation for this rather counterintuivive result, it seems
that the relative importance of each feature is reduced by
considering each one of them separately and then sum-
marizing the results through majority rules. As a result,
bad features have limited impact in the overall accuracy.
On the other hand, the SVM considers a multidimensional
space determined by all the features considered at once. In
this case, a single bad feature may have significant impact
on the overall classification scheme.

The results of all nine features are then summarized, and the
instrument that appears more times is taken as the winner for
that particular pair (step 3 in Fig. 2). Since the number of fea-
tures is odd, equality between the instruments is not possible at
this point.

A new summarization is then performed along all 300 pairs
of instruments. The instrument that appears more times among
the pair winners is taken as partial winner (step 4 in Fig. 2). If
an equality occurs, the total number of wins considering each
feature separately is used as a tiebreaker. A new equality in this
case is very unlikely but, if it happens, the winner is taken ran-
domly among the tied instruments.

A further summarization is then performed along all isolated
partials, whose number may vary depending on the number
and frequencies of the other simultaneous instruments. If there
is only one isolated partial, the partial winner will also be
the frame winner, otherwise the instrument that wins for the
greatest number of partials is taken as the frame winner (step 5
in Fig. 2). At this point, multiple equalities are common. The
first tiebreaker is the total number of pair wins within the frame,
and if a (unlikely) new tie occurs, the total number of wins
considering individual features is taken into account.

The same procedure is repeated for all simultaneous sources
present in the frame, and then for all frames of the signal (step 6
in Fig. 2). Finally, if an instrument is present in more than 5%
of the total duration of the signal, it is definitely considered as
being part of the signal (step 7 in Fig. 2). The threshold of 5%
was chosen to avoid propagating isolated frame misclassifica-
tions to the entire signal. In this way, an instrument that is mis-
takenly considered as being part of a frame (which will be likely
smaller than 5% of the whole signal) is prevented from being
considered part of the whole signal. On the other hand, instru-
ments that are actually present for only a short period may be
discarded. Because of that, the threshold is a parameter left open
in the final algorithm, so the user can set it according to the ex-
pected characteristics of the signals to be analyzed.

IV. EXPERIMENTAL RESULTS

The training of the method was performed using individual
instrument notes taken from the RWC database [40]. All sam-

ples used in the training process—about one-third of the notes
available in the RWC database corresponding to two hours of
material—were removed from the experimental tests to avoid
biased results. The tests were performed using the remaining
two-thirds of the RWC signals, individual notes taken from the
University of Iowa musical instrument samples database [41],
and a number of real recordings, as will be described throughout
this section.

The experimental tests performed here can be divided into
three main stages. The first stage aimed to measure the specific
performance of the method to identify instruments, and is de-
scribed in Section IV-A. The second stage aimed to analyze the
effects of errors in the onset identification (Section IV-B) and
in the fundamental frequency estimation (Section IV-C). Since
the effects of errors in the number of instruments are straight-
forward—underestimates imply in instruments remaining un-
classified, and overestimates imply in the inclusion of nonex-
istent instruments—no specific study on those was carried out.
Finally, the third stage aimed to assess the performance of the
entire system (all supporting tools included) using both artificial
mixtures (Section IV-E) and real recordings (Section IV-F). The
95% confidence interval for all results presented in this section
is given, in average, by % %.

A. Performance of the Instrument Identification

This part of the tests aimed to measure the specific perfor-
mance of the method in identifying instruments, in which case
the onset positions, number of instruments and fundamental fre-
quencies were supposed to be known. A large number of sig-
nals was generated for the tests as follows. Each signal is com-
posed by a 100-ms segment of silence, followed by the active
part created by summing a number of individual notes from dif-
ferent instruments, and ends with another 100-ms segment of
silence. The active part starts with the alignment of the onsets of
all simultaneous notes, and ends with the offset of the last note
still active. The duration of each signal is thus directly related
to the duration of the longest note in the mixture—all signals
have a duration between 0.5 and 5 s (most in the range 1.5–3 s).
As can be seen, the signals are actually composed by only one
frame, because in this part of the tests the onset identification is
not under investigation. The number of simultaneous sources in
each signal can vary between two and five, and the instruments
and respective notes were taken randomly, provided that each
instrument has at least one isolated partial. This means that any
harmonic relation between the notes is allowed, with exception
of the 1:1 ratio. As a result, most signals have at least one pair of
closely related notes (2:1, 3:2, and 4:3 frequency ratios). A given
instrument can appear more than once in the same mixture, and
the entire note range of each instrument was considered. In total,
a little less than 9 hours of audio material was used in the tests.
Table I shows the number of signals generated from each data-
base (RWC and University of Iowa), in terms of the number of
simultaneous notes.

Fig. 3 presents the confusion matrix for individual partials.
Those results are equivalent to assuming that all instruments
have always only one isolated partial available, so a partial
winner will always be a frame winner (step five does not take
place—see Section III-B). Fig. 4 presents the confusion matrix
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Fig. 3. Results for isolated partials (in %).

TABLE I
NUMBER OF SIGNALS USED IN THE TESTS

for the cases in which at least six isolated partials were available
for each instrument. Table II shows the codes used for each in-
strument (in alphabetical order). In Figs. 3–5, the darkest is the
shade of gray, the most related are the instruments. The main
diagonal in the matrices represent the correct classifications.

The analysis of Fig. 3 reveals some important information.
First, the results are better for instruments that have only a few
related instruments. Indeed, it should be expected that voice sig-
nals, which have very particular characteristics, lead to much
better results (87% of correct classifications) than, for instance,
alto saxophone (50%), which has four related instruments in the
database (other types of saxophone). It is easy to notice that
most misclassifications occur amidst related instruments, which
indicates that the method is capable to at least identify the cor-
rect class of instruments in most cases. Good results are also
achieved for instruments whose typical frequency range is in
one of the extremes of the spectrum, as is the case of piccolo
(88%), whose notes have frequencies that are higher than the
highest notes produced by most instruments. This is because the
F0 of the source with respect to the ranges of the instruments is
one of the criteria of classification, as described in Section III-B.
If the F0 is outside the range of most instruments, the number
of potential winners is small, increasing the chances of a correct
classification. Overall, the results shown in Fig. 3 can be con-
sidered remarkably good, considering that they were obtained
using only individual partials.

As expected, the results shown in Fig. 4 are better than those
in Fig. 3, since there are more partials to summarize the re-
sults—the final classification is given by the instrument with
more wins along all partials. In some cases, having several par-
tials available nearly double the accuracy, like in the case of ac-
cordion (44% to 82%). The overall accuracy of the algorithm
when several partials are available was 80.3%. Previous studies
show that the instrument recognition rates by human listeners
are usually significantly lower, especially if many instruments
are involved [42]–[45]. For example, Srinivasan et al. [45] car-
ried out a study in which conservatory students were asked to
associate isolated tones to one of 27 possible instruments, with
an average recognition rate of 55.7%.

The use of the same database to train and test the algorithm
may, in some cases, lead to deceptively good results [46]. Be-
cause of that, samples from the University of Iowa musical in-
strument samples database [41] were used to provide a cross-
database validation, whose results for isolated partials are shown
in Fig. 5. Because this database includes only 15 of the 25 in-
struments used in the training, ten rows of the confusion matrix
were removed, but the columns were kept as the signals can still
be classified as one of the missing instruments. As a result, there
is no main diagonal anymore, and the correct classifications are
given by the cells with the darkest shade of gray. As can be seen,
the results are slightest worse for most instruments, and a little
better for a few of them. The overall recognition rate was 60.5%,
against 62.2% for the RWC database (with the ten missing in-
struments excluded in Fig. 3). Considering the cases with at least
six partials present, the accuracy rates were 76.7% for the Uni-
versity of Iowa database and 78.7% for the RWC database. Such
small differences provide some evidence that the algorithm has
good generalization capacity.
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Fig. 4. Results when at least six partials are present (in %).

Fig. 5. Results for isolated partials using the University of Iowa database [41] (in %).

TABLE II
INSTRUMENT CODES

Table III shows a condensed performance comparison for
some selected instruments, reinforcing the idea that the best re-
sults are indeed obtained considering several partials, and that
there is only a small drop in the accuracy when signals from a
database not used in the training are submitted to the algorithm.
In Table III the overall results presented for the RWC database
consider only the 15 instruments present in the University of
Iowa database.

All results presented to this point were obtained under the as-
sumption that onset positions, number of simultaneous sources
and fundamental frequencies are known, so the instrument
identification procedure could be assessed in isolation. The
next subsections present some additional studies and results
in order to provide a more comprehensive picture of how a
complete system would perform. The tests presented in Sec-
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TABLE III
CONDENSED COMPARISON BETWEEN DIFFERENT CASES (IN %)

tions IV-B to IV-E were performed using the signals generated
from the University of Iowa database in order to provide results
as unbiased as possible.

B. Effects of Onset Misidentifications

This section analyses the effects of onset misplacements. The
following kinds of onset location errors may occur.

1) Small errors: Errors smaller than 10% of the frame length
have little impact on the accuracy of the instrument identi-
fication, because the characteristics of the partials are only
slightly altered.

2) Large errors, estimated onset placed after the actual posi-
tion: This kind of error has little effect over sustained in-
struments, because the characteristics of the note are ap-
proximately the same for its whole extent. On the other
hand, this kind of error may cause problems for instruments
whose notes decay over time (e.g., piano and guitar), be-
cause the main content of the note, which is usually near
the actual onset, may be lost. In those cases, the instrument
identification accuracy drops almost linearly with the onset
error—for example, a 30% forward error in the onset po-
sition will result in 30% less accurate estimates for instru-
ments with decaying notes.

3) Large errors, estimated onset placed before the actual po-
sition: In this case, a part of the signal that does not contain
the new note is considered. This may not affect the accu-
racy at all, if the notes in the spurious segments are not har-
monically related to the notes in the actual segment. If there
is some kind of harmonic relationship, then the severe-
ness of the effects will be directly linked to the number
of common partials between the spurious and actual notes,
and to the length of the onset displacement. Table IV shows
the effects of the onset misplacements (given in percentage
of the actual frame) when the interfering note has 1/3, 1/2
and all partials in common with the note to be classified.
The values given in Table IV represent the relative accuracy
given by , where is the accuracy of the method
when there is onset misplacement, and is the accuracy
of the method when the onset is in the correct position. As
can be seen, when there are some partials that are not af-
fected by the interfering note, the method is able to com-
pensate in part the problems caused by the onset misplace-
ment. Even when the interfering note has the same fre-
quency as the target note, the algorithm is able to compen-
sate the damaging effects to some degree because, when
the amplitudes of interfering partials are low, the charac-
teristics of the actual partial to be classified may still stand
out. Fig. 6 summarizes the effects of both backward and
forward onset misplacements.

Fig. 6. Effect of the backward and forward onset misplacements.

TABLE IV
EFFECT OF ONSET BACKWARD ONSET MISPLACEMENTS

C. Effects of F0 Misestimates

The F0 estimator used in the system [32] has an overall ac-
curacy around 85%. This does not mean that the results shown
in Figs. 3–5 will be 15% worse when this tool is incorporated.
Actually, the impact is less severe, and depends on the kind of
error. The most common error in F0 estimator are the so-called
octave errors, in which the estimate is actually a multiple or sub-
multiple of the correct F0. If the misestimate is a multiple of the
correct F0, the only effect is that fewer partials will be available
for summarization, hence the impact is very limited: the accu-
racy drops by 2% if the estimated F0 is one octave above the
correct one, by 5% if it is two octaves above, and by 7% if it is
three octaves above.

If the misestimate is a submultiple of the actual F0, all correct
partials will be considered, together with a number of spurious
ones. The impact here is also limited: if the spurious partials
collide with actual partials from other instruments, the only ef-
fect will be the removal of the partials from the process, as only
isolated partials are considered; on the other hand, if the spu-
rious partials are in a noise-only part of the spectrum, they will
generate wild data that will result in a variety of classifications,
and if the actual partials are classified correctly, they will dom-
inate the scoring process and no error will occur. Experiments
showed that the accuracy drops in average 4% if the estimated
F0 is one octave below the correct one, 7% if it is two octaves
below, and 13% if it is three octaves below.

Other kinds of F0 misestimates have a much more pro-
nounced impact, and such impact will be as severe as less
actual partials are taken into account. In general, no accuracy
whatsoever can be expected if the misestimated F0 has no
harmonic relation with the actual one. Table V summarizes the
information presented in this section. In this table, the first row
presents the estimated frequency with respect to the correct
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TABLE V
EFFECT OF F0 MISESTIMATES

Fig. 7. Effect of noise on the algorithm performance.

TABLE VI
PERFORMANCE UNDER NOISY CONDITIONS

frequency (e.g., indicates that the estimated frequency is
one octave below the correct one).

D. Performance Under Noisy Conditions

Because the strategy presented here depends on fine-tuned
features and thresholds, it is sensitive to noise. In general, it was
observed that any colored noise is less harmful than white noise,
because in the former case some parts of the spectrum are only
mildly affected by the noise, so some partials may still main-
tain their original characteristics. On the other hand, white noise
is likely to affect all partials, potentially making the scoring
process and majority rules unreliable. Fig. 7 and Table VI show
the performance degradation for different signal-to-noise ratios
(SNRs), using white noise. As in Table IV, the numbers rep-
resent the relative accuracy given by , where is the
accuracy of the method under noisy conditions, and is the
accuracy of the method when the signal is noise-free. As can
be seen, the algorithm begins to lose reliability for SNR below
15 dB. However, it is important to notice that the noise levels of
musical signals are, in general, low, so the algorithm is expected
to work properly for the vast majority of the signals.

E. Precision and Recall in Isolated Frames

The results presented in this subsection were obtained using
the entire system, which includes the tools for location of onsets,
estimation of the number of simultaneous instruments, estima-
tion of the fundamental frequencies, and the instrument classi-
fier itself. Since the number of instruments is unknown, mea-
sures like precision and recall [19] provide useful information
on the performance of the algorithm. Table VII shows the pre-
cision and recall values as a function of the number of simul-
taneous instruments. As can be seen, the results deteriorate sig-
nificantly as the number of simultaneous instruments increase.

TABLE VII
PRECISION AND RECALL FOR THE ARTIFICIAL MIXTURES

TABLE VIII
PERFORMANCE OF THE SYSTEM FOR REAL RECORDINGS

This is due to two factors: first, more instruments mean that there
will be less clean partials available; second, the accuracy of the
number of sources is better when there are only a few instru-
ments present. Fortunately, the musical signals to be analyzed
normally have several frames that can be analyzed by the algo-
rithm, and the subsequent integration of the results over the en-
tire signal is able to partially compensate those problems. This
can be seen in Section IV-F, which presents the results for real
recordings.

F. Classification of Real Recordings

The results presented in this subsection were also obtained
using the entire system. One-hundred 1-min excerpts were
taken from commercial recordings, comprising the musical
genres pop/rock, classical, and jazz. The excerpts were chosen
in such a way they do not include any nonpercussive instru-
ments other than those used in the main tests. Each excerpt
may have between two and seven instruments. Twenty-nine of
the excerpts include percussion instruments, which cannot be
classified by the algorithm, so they act as noise. In average, an
instrument is present in 16 excerpts; the piano (17 occurrences)
is the most frequent instrument, and vibraphone (2 occurrences)
is the least represented one.

Since the entire system was used here, the only input to the
algorithm is the signal to be classified. Table VIII presents the
results in terms of the number of instruments in the excerpt.
Table IX presents the results for each instrument.

As can be seen in Tables VIII and IX, the recall values are very
high, meaning that almost all instruments present in the signal
are identified. On the other hand, the precision value is close to
0.6. This means that, for each ten instruments correctly identi-
fied, between six and seven instruments that are not present are
mistakenly identified. However, it is important to highlight that
most false positives come from instruments that are related to
those present in the signal. This can be seen in Table X, which
shows the results for ten selected signals. In this table, the in-
struments column shows the instruments present in the signal,
the number of instruments column shows the total number of
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TABLE IX
PERFORMANCE OF THE SYSTEM IN TERMS OF INDIVIDUAL INSTRUMENTS

TABLE X
PERFORMANCE FOR SELECTED EXCERPTS

instruments (percussion instruments not included), the identi-
fied column shows the number of instruments correctly identi-
fied by the algorithm, and the false hits (related) column shows
the number of instruments mistakenly identified by the algo-
rithm and, between parenthesis, how many among those false
hits are related to the other instruments in the signal, according
to the second darkest shade of gray in Fig. 3. As can be seen,
all instruments were recognized for eight signals, and only one
instrument was missed for the other two. This reinforces the
claim that the algorithm is effective in identifying the correct
instruments in real signals. On the other hand, the number of
false hits is, as expected, relatively high, and every signal had
at least one false hit. However, as commented before, many of
those false hits are of instruments closely related to the correct
ones (e.g., misidentifying oboe as bassoon), which indicates that
the algorithm is able to recognize the instrument family in most
cases. The number of false hits can be reduced by changing the
threshold for a instrument to be considered part of the signal
from 5% to larger values. However, this also reduces the number
of correct hits. Thus, such a parameter must be set taking into
consideration the tradeoff between the number of correct and
false hits.

As stated before, there are 29 excerpts that contain nonhar-
monic instruments. In most of those excerpts, the nonharmonic
instruments are not strong or frequent enough to cause any dis-
cernible drop in the performance of the algorithm. However, in
some cases they act like a very strong noisy interference, which
can cause the SNR of some segments to drop below 0 dB. This
happens in six of the excerpts—considering only those, both the
recall and precision have values around 0.6. This means that the
algorithm may have problems if the signal under analysis has
very strong percussive elements.

V. CONCLUSION

This paper presented a new method to identify musical in-
struments in polyphonic musical signals. The method uses a
pairwise comparison approach to determine which instrument
corresponds to each individual partial, and summarizes the re-
sults to provide an overall estimate of the instruments present
in the signal. Tests performed with notes extracted from 25 in-
struments and two databases showed that the method has com-
parable or even possibly superior performance than human lis-
teners, and works well for SNRs above 15 dB.

A possible shortcoming of the proposed algorithm would
be its dependency on other tools to perform tasks like onset
detection, estimation of the number of simultaneous instru-
ments, and estimation of the fundamental frequencies. Tests
have shown that, although errors caused by imperfections on
those supporting tools indeed propagate throughout the system,
their overall effect is actually relatively mild. Further evidence
is provided by the tests performed with the whole system using
real recordings, which revealed that the correct instruments are
identified in the vast majority of the cases, although the number
of false hits is still relatively high.

A direct comparison with other methods for instrument
recognition was not presented here due to several practical
constraints. A fair comparison is only possible if the same
signals and the same number of instruments are considered.
This eliminates the possibility of using the results published
by the respective authors, since the signals and number of in-
struments vary wildly. The only option would be implementing
the methods and testing them over the same database. This
option poses three problems: first, many methods are described
in short conference papers that do not provide all information
necessary to reproduce exactly the algorithm implemented by
the authors; second, many of the methods are quite complex,
making the debugging process very difficult without having
some specific knowledge; and third, many of the proposals use
a quite different classification philosophy, like, for example,
using an entire instrument phrase at once, making it difficult
to make a direct comparison even if the original algorithm is
available. This indicates that there is a need for a standardized
metric and database for evaluating instrument classification in
polyphonic music. We intend to explore possible solutions to
this problems in the near future.

The results presented here can be extended in a number of di-
rections. One important improvement would be including the
ability to recognize sound sources that lack harmonic struc-
ture, as most percussion instruments. Future work can also con-
centrate in reducing the dependency of the algorithm on side
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information provided by other tools (onset position, number
of instruments, fundamental frequencies). Finally, it would be
useful to create mechanisms to improve the tradeoff between the
number of correct and false hits. We expect that the algorithm
proposed here help to expand the applicability and effectiveness
of a number of digital music applications.

APPENDIX

This Appendix presents the way each one of the 34 features
used in this work were calculated. All features are calculated for
individual partials.

A. Features Based on the Energy Spectrum

Features 1 to 3—Bandwidth: These features measure the
bandwidth containing a given percentage of the total energy
in the partial, which is centered around the frequency bin
where the maximum magnitude occurs in the DFT. The DFT is
calculated across the entire length of the partial. The features
are given by

band (1)

where is the magnitude spectrum resulting from applying
a discrete Fourier transform (DFT) to the filtered partial, is
the length (in frequency bins) of the subband to be tested, is
the index of the first frequency bin of the subband, represents
the index of the frequency bins within the partial, is the total
number of frequency bins in the partial, and is the proportion
of energy, which is 0.9 for feature 1, 0.95 for feature 2, and 0.99
for feature 3.

Feature 4—Relative Centroid: It measures the asymmetry of
the energy spectrum with respect to the center of the partial, and
is given by

rcent (2)

where for odd, and for even.

B. Features Based on the Amplitude Envelope

Features 5 to 10—Amplitude Modulation Features: These
features are inspired on the homonymous ones suggested by
Eronen [47]. They are based on the amplitude envelopes ex-
tracted from the temporal signals corresponding to each partial.
The envelope is generated by dividing the signal into 10-ms
frames with 50% overlap, and calculating their RMS values. The
Fourier transform of the envelope is then extracted, which
is the basis for the calculation of the features, as described next.

Feature 5: is given by the frequency of the highest peak of
in the 4–8 Hz range.

Feature 6: same as feature 5, but in the 10–40 Hz range.
Feature 7: is given by the magnitude of the highest peak
in the 4–8 Hz range, divided by the mean magnitude of all
frequency bins.
Feature 8: same as feature 7, but in the 10–40 Hz range.
Feature 9: is given by the magnitude of the highest peak
in the 4–8 Hz range, divided by the mean magnitude of all
frequency bins within that range.

Feature 10: same as feature 9, but in the 10–40 Hz range.
Feature 11—Crest Factor: This feature is inspired by the

homonymous one suggest by Eronen [47], and is given simply
by the ratio between the maximum and the RMS value of the
amplitude envelope.

Feature 12—Onset Duration: This feature has also a coun-
terpart in [47]. The beginning and end of the onset are given by
the points where the magnitude of the amplitude envelope rises
above dB and dB with respect to the RMS value of the
entire note, respectively.

Feature 13—Slope of Amplitude Decay: Also inspired in
[47], this feature is given by the gradient of the line fitting
the segment of the amplitude envelope between its maximum
and the point where it falls below 10 dB with respect to the
RMS value of the entire note. Before the fitting, the amplitude
envelope is transformed to the logarithmic domain.

Feature 14—MSE Between Line And Real Data: This feature
is given by the mean squared error between the line used in
feature 20 and the data it tries to approximate.

Feature 15—Amplitude Roughness: This feature is given by
the ratio between the standard deviation and the mean of the
amplitude envelope.

Feature 16—Relative Variation of Amplitude Envelope: This
feature is calculated in the same way as Feature 30, but here the
amplitude envelope is used instead of the frequency trajectory.

An alternative way of calculating the amplitude envelope
using the Hilbert transform was suggested by Every [48].
Although the objective is the same as the procedure suggested
by Eronen [47], the resulting curves are sufficiently different to
reveal different characteristics of the signals. Features 17 to 22
are calculated based on this Hilbert transform-based amplitude
envelope, which is obtained by performing the Hilbert trans-
form of the waveform and low-pass filtering the magnitude of
the result using a IIR Butterworth filter with a cutoff frequency
of 20 Hz.

Feature 17—Centroid: This feature calculates the center of
gravity of the amplitude envelope, and is given by

(3)

where is the time index, is the number of samples and
is the amplitude of signal in the instant .

Feature 18—Note Spread: This feature is given by

spread (4)

Feature 19—Note Skewness: This feature is given by

skew (5)

Feature 20—Note Kurtosis: This feature is given by

kurt (6)

Features 21 and 22—AM Frequency and AM Amplitude:
These features are calculated using the guidelines presented
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in [48, p. 191]. Since the description for their extraction is
extensive, it will not be presented here.

C. Features Based on the Frequency Trajectory

Features 23 to 28—Amplitude Modulation of the Frequency
Trajectory of the Partials: These features are calculated exactly
in the same way as features 5 to 10. The only difference is that
the amplitude envelopes are replaced by the frequency trajecto-
ries of the partials, which are calculated using the normalized
autocorrelation [49].

Feature 29—Standard Deviation of the Frequency Trajectory:
This feature consists simply in calculating the standard devia-
tion of the frequency trajectories of the partials.

Feature 30—Jitter: Inspired on the homonymous feature sug-
gested by [38], it measures the stability of the partial over time
using the frequency trajectories cited in Features 23 to 28. This
feature is given by

jitter (7)

where is the time index, is the total number of samples in
the frequency trajectory, and is the frequency of the partial
in the instant .

Features 31 to 34—Frequency Trajectory Curve Features:
The four final features are original, and are extracted from the
frequency trajectory of the partials. First, a smoothed version
of the frequency trajectory is generated by applying a low-pass
filter with cutoff frequency at 25 Hz. Then, all local maxima
and minima are identified. Finally, the following two features
are extracted:
Feature 31: is given by the standard deviation of the distance
between the peaks. This feature aims to determine if the fre-
quency envelope fluctuates wildly (high standard deviation) or
has a marked pattern.
Feature 32: is given by the standard deviation of the difference
between the amplitudes of each local maximum and the next
local minimum. This feature also aims to characterize the fluc-
tuations present in the smoothed frequency trajectory.

Features 33 and 34 are calculated in the same way, but in this
case the smoothed frequency trajectory is obtained by applying
a low-pass filter with cutoff frequency at 50 Hz. Features 31 and
32 work better for some instruments, while features 33 and 34
work better for others. Due to their similarity, they rarely appear
together in the group of nine features used to characterize each
pair of instruments.
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