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ABSTRACT

Spectrogram factorization methods such as Non-Negative
Matrix Factorization (NMF) are frequently used as a way to
separate individual sound sources from complex sound mix-
tures. More recently, they have also been used as a first stage
for the automatic transcription of polyphonic music. The
problem of sound source separation is different (but related)
to the problem of automatic music transcription. The out-
put of the first is the separated audio signals corresponding
to each sound source, whereas the output of the second is a
symbolic representation/music score that encodes the discrete
pitches/notes that are played and when they are played. Many
variations of factorization methods have been proposed. Two
important design choices are the way spectra are represented
and what distance measures are used to compare them in the
optimization used for factorization. A common assumption
has been that a variant that yields better signal separation
will result in better automatic transcription. In this work, we
investigate experimentally this question and show that this
relationship is not necessarily true.

Index Terms— Non-negative matrix factorization, Music
Transcription, Beta-Divergence, Sound Source Separation.

1. INTRODUCTION

Automatic Music Transcription (AMT) is the task of detect-
ing musical notes in an audio signal. Musical notes are de-
scribed by their onset (time instant when the note is trig-
gered), offset (time instant when the note is damped) and pitch
(describing which note is being played). Other information,
such as velocity, is often neglected. Some of the current appli-
cations for AMT systems are in query-by-content databases
[1], tutoring software [2] and musical analysis [3].

Earlier work in AMT was mostly based on multiple pitch
estimation methods. More recently several AMT systems
based on spectrogram factorization methods that originated
in audio source separation have been proposed. These sys-
tems rely on the assumption that the short time spectrum of
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an audio signal is a linear combination of the spectra cor-
responding to the individual notes that are active during the
time period over which the spectrum is computed:

x = Ba+ ¢, 6]

where « is the short-time power spectrum of the mixture au-
dio signal at a particular time, B is a matrix where each col-
umn is a prototype spectrum corresponding to a particular
note, a is an activation vector that has high values for the
notes that are active and low values for notes that are not ac-
tive during that time, and ¢ is the approximation error. When
all the short-time spectra of the audio signal at different times
are considered together, they form the spectrogram X. The
result over time is the activation matrix A = [a1, aq, ..., ag].
This activation matrix can then be thresholded, yielding the
desired AMT output (similar to a “piano roll” format). The
activation matrix can be obtained by using Non-Negative Ma-
trix Factorization (NMF), which aims to minimize a diver-
gence d(X|BA) between X and B A with the constrain of
non-negativity for all matrix elements.

NMF for audio signals was originally applied for audio
source separation where the desired output is the audio signals
corresponding to the individual sound sources in a mixture. In
AMT, each individual note is considered as a different audio
source, so its activity level (i.e., how loud it is sounding) at
each moment is obtained using NMF. Due to this proximity, a
common assumption underlying factorization approaches for
AMT is that algorithms that obtain good sound source sepa-
ration will also result in better AMT. In this work, we exper-
imentally investigate this relationship using different variants
of the common NMF algorithm. We consider the optimistic
scenario where B is known and is not estimated during the
factorization (this enables real time calculation of A). The
results show that the relationship between source separation
and transcription performance is weak.

2. RELATED WORK

NMF has been used in audio signal processing for solving
under-determined source separation problems [4, 5, 6] as well



as AMT [7]. In Smaragdis and Brown’s work [7], both B and
A were obtained by minimizing || X — BA|. A common
assumption when using NMF is that a technique that yields
the best A will also yield the best approximation Y = BA.
Hence, different variants of the basic NMF algorithm have
been used to improve how well X can be approximated using
the base B. One of these techniques is changing the spectral
representation used in the factorization process.

By using the power spectrum (|y|?), low-energy compo-
nents become less relevant in the approximation, but the mag-
nitudes of the high-energy components tend to exhibit larger
variations [8, 9]. On the other hand, a logarithmic represen-
tation (log(1 + |y|)) can be more stable, while giving more
importance to low-energy components [10]. The magnitude
of the DFT (|y|) has also been used in AMT [11, 12], and
can be viewed as a tradeoff between the advantages and dis-
advantages of the logarithmic and power spectrum. It is pos-
sible to exploit the fact that the columns of B are roughly a
frequency-domain shift of each other [13]. Also, it is pos-
sible to assign more than one base vector for each note [14]
improving the approximation. Changing the divergence mea-
sure that is minimized can yield better transcription results.
Dessein et. al [9] used the beta divergence [15], defined as:
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All values of 3 lead to the same global minimum (eg(z|z) =
0), but the behaviour of the divergence for « # y is different.
These different variants can lead to different inexact approx-
imations. We experimentally investigate how these variants
affect performance using both source separation and AMT
evaluation metrics.

3. METHODOLOGY

Our experiments aimed at comparing the performance differ-
ence caused by changing the factorization method in an auto-
matic transcription algorithm and a source separation process.
For such, it is necessary to have a dataset consisted of audio
files and time-aligned ground-truth. The dataset we used was
created utilizing the MIDI files used by Poliner and Ellis [16].
The files were downloaded from a MIDI Database [17] and
rendered using the same piano note samples that were used to
obtain the base matrix. The samples were downloaded from
the Iowa Musical Instrument Samples database [18]. This is a
best case scenario where there is prior knowledge of the sound
source material and the challenge is to recover the activations
of the polyphonic mixture. In total, the database consists of
24 files containing 174 minutes of polyphonic piano Classical
music, which has showed to suffice for obtaining statistically
valid results.

The base matrix B was obtained by averaging the spec-
trograms of the first 250 milliseconds from the recordings of
each individual piano note. This corresponds to 10 frames
considering frames of 2048 samples with a hop size of 1024
and a sampling rate of 44100 Hz. The higher harmonics of
piano notes decay more quickly. Therefore, this time-domain
pruning avoids using parts of the note with low harmonic con-
tent.

We avoided using approaches that allow the adaptation of
the base matrix B. In this kind of approach, the relation-
ship between each base vector and each note could be lost
[7]. Therefore, the problem of assigning bases to notes would
arise, and would represent a different parameter to be ana-
lyzed.

Four values for 3 were considered. When 5 = 2 (Eu-
clidean distance), the result is a minimum squared error
approximation. When 8 = 1 (Kullback-Liebler diver-
gence), a minimum mutual entropy solution is obtained. The
Itakura-Saito divergence (5 = 0) corresponds to the Gaus-
sian, maximum-likelihood approximation. Finally, the value
B = 0.5 was used as it has been shown to give good results
in the context of AMT [9]. Three different representations
for the spectrogram were used, as discussed in Section 1: the
logarithmic (log(1 + |x|)), the magnitude (|x|) and the power
(|x|?). The activation vector a was obtained for each audio
frame by means of an iterative algorithm [19].

A symbolic transcription was obtained by thresholding
the A matrix and excluding from the final results all notes
whose duration was less than 50 ms. The transcription re-
sults were analyzed using the evaluation metrics used in the
Music Information Retrieval Exchange (MIREX) [20], that
is, the Recall (R; true positives divided by the total number of
notes in ground truth), Precision (P; true positives divided by
the total number of yielded notes) and, finally, their harmonic
mean called the F-Measure (F = 2RP/(R + P)). A note is
considered correct if, when compared to a ground-truth anno-
tation, its pitch is within half a semitone, its onset is within 50
ms, and its duration does not deviate by more than 20% of the
reference. Note offsets are often considered not as important
as onsets [20] and can be excluded from the evaluation. For
each case, the threshold applied to A was the one that max-
imized the F-Measure over the whole database, that is, the
same threshold was used for all pieces.

To measure the accuracy of the separation process, we
evaluated how well the model yielded by the factorization
model could reconstruct the original signal. Using the activa-
tion and the base matrix, two different reconstructions were
evaluated: the spectrogram reconstruction and the audio sig-
nal reconstruction. The spectrogram reconstruction, for each
frame, consisted of calculating the approximation y = Ba
for each frame, yielding a spectrogram Y . The original audio
file was reconstructed frame-to-frame by performing overlap-
and-add using the inverse DFT of vectors whose magnitude
values were taken from Y and the phase values from X, a



standard phase-vocoder technique [21].

To evaluate the spectrogram reconstruction, the measures
proposed by Vincent er. al [22] were used: the Signal-to-
Interference Ratio (SIR), the Signal-to-Artifacts Ratio (SAR)
and the Signal-to-Distortion Ratio (SDR). In this evaluation,
each frequency bin in the spectrogram is considered as a dif-
ferent source. Therefore, the SIR represents how much each
frequency interferes with each other, the SAR highlights er-
rors caused by artifacts and the SDR gives a general idea of
the reconstruction error considering both noise, interference
and artifacts. To evaluate the time-domain signal reconstruc-
tion, only the SDR was used, as it is a monaural signal so the
other measures do not apply.

We calculated the Spearman (rank) correlations between
each one of the reconstruction measures and the respective
F-Measures. In addition to the correlation values, a P-Value
was also calculated, representing the probability that the two
compared measurements are not correlated. This value is ob-
tained using a T-Student test, and, when it is lower than 5%,
the compared measures may be considered correlated. The
correlations were obtained considering, first, the whole set of
data. Then, the value of 8 was fixed and the results using
different pieces and spectral representations were considered.
This aims to show the influence of the spectral representation
in the final results. Two other similar partitions were consid-
ered, fixing the spectral representation and the piece.

4. EXPERIMENTAL RESULTS

The average performance measures (F-Measures and distor-
tion measures) for each spectral representation and J are re-
ported in Tables 1, 2 and 3. From these results, it is possi-
ble to detect some trends. In Table 1, for all values of 3 the
magnitude and the power spectrum representations yielded,
respectively, the best and the worst results. It can also be seen
that the results when considering only the onsets and when
also considering offsets are greatly correlated. Table 2 shows
that the only distortion measure that was clearly improved by
using the magnitude representation was the SIR — the SDR
and the SAR were, in general, best when using the logarith-
mic representation. As shown in Table 3, the worst signal re-
construction distortion values were obtained when using the
magnitude representation. The factorization using | X|? and
B = 0.0 did not yield an activation matrix with a meaning-
ful outcome for transcription, but the results in tables 2 and
3 show that this factorization can be used to reconstruct the
original signal with less distortion.

The rank correlation over the entire the dataset was calcu-
lated, yielding the results shown in Table 4. The effects of the
value of 0 were evaluated by calculating the correlation for
each value of  separately, yielding the results shown in Ta-
ble 5. A similar experiment was performed considering each
different spectral representation, yielding the results shown in
Table 6. Last, the results for each individual piece were con-

Table 1. Average F-Measures (considering onset only/onset
and offset) for each spectral representation and 3.

[ B [[log+ XD IXI [ IXP* |
2.0 0.74/0.42 0.79/0.47 | 0.68/0.28
1.0 0.80/0.51 0.84/0.54 | 0.72/0.31
0.5 0.78/0.50 0.86/0.60 | 0.76/0.32
0.0 0.72/0.45 0.80/0.58 | 0.00/0.00

Table 2. Average spectral reconstruction distortion
(SDR/SIR/SAR), in dB, for each representation and /.
| B [llog(1+[X]) | | X | X |

2.0 || 2.6/2.83/18.4 | 5.8/6.4/18.8 | -12.0/-11.7/13.0
1.0 || 4.6/5.0/18.3 | 8.2/8.9/19.6 | -14.8/-13.7/7.7
0.5 || 6.0/6.5/18.0 | 8.9/9.9/18.0 | -21.4/-18.8/3.7
0.0 || 6.7/7.4/16.6 2.2/5.7117.1 -18.9/-16.3/5.2

Table 3. Average time-domain reconstruction distortion
(SDR-a), in dB, for each representation and [3.
| B [[log(1+[X]) [ [X] [ IXP* |

2.0 -5.3 -12.7 | -11.67
1.0 -5.9 -13.0 | -11.7
0.5 -6.0 -129 | 9.7
0.0 -6.7 -15.2 | -8.0

sidered, so that the effect of the musical complexity could be
evaluated. For this test, no significant or strong correlations
were found, so the result table was omitted.

Table 4 shows that, for the whole dataset, all correlations
between distortion measures and the transcription results are
significant, but weak. It can be seen that the SAR is more
important when finding only onsets than when finding onsets
and offsets. Interestingly, the results show a negative correla-
tion between the SDR-a and both F-Measures, which means a
better signal reconstruction tends to indicate worse transcrip-
tions. These results are confirmed in Table 5, except for the
cases where 3 = 0.0. In these cases, all calculated correla-
tions are negative and, interestingly, very weak in for the SDR
and SIR when considering the transcription evaluation with
onsets and offsets. Very weak correlations were also found
for the SDR-a when 8 = {2.0,1.0}. The greatest correla-
tion value were, in general, found for the SIR and the SDR,
but they were consistently lower than 0.65, which indicates a
weak to average correlation. Table 6 shows a similar set of re-
sults. Weak correlations are consistently found for SDR, SIR
and SAR, and negative correlations are found for SDR-a.

In general, the distortion measures show only a weak to
average correlation with the F-Measure. It can be noted that
the SIR and SDR are more correlated to the transcription re-
sults than the SAR. However, the difference between them is
lower when considering only the detection of onsets. Neg-
ative correlations were obtained for the SDR-a, regardless of



Table 4. Spearman (rank) correlation between the F-Measure and different distortion measures considering whole dataset.

’ Evaluation

[ SDR

|

SIR \

SAR [

SDR-a |

Onset only

0.37 (P=3 x 10~ 10)

0.37 (P=2 x 10~ 10)

0.31 (P=2 x10~7)

20.48 (P=5 x10~7)

Onset and offset

0.43 (P=9 x 10~ 1%)

0.48 (P=x10~1%)

0.18 (P=0.0019)

~0.27 (P=0.006)

Table 5. Spearman (rank) correlation between the F-Measure and different distortion measures considering fixed values of (.

’ Evaluation H 8 H SDR SIR \ SAR H SDR-a ‘
2.0 |[ 0.51 (P=3 x10-°) | 0.51 (P=4 x10-%) | 0.45 (P=5 x10-5) | -0.29 (P=0.012)
Onset only 1.0 || 0.54 (P=9 x10~7) | 0.53 (P=1 x10~5) | 0.54 (P=8 x10~7) || -0.23 (P=0.044)
0.5 || 0.44 (P=9 x1075) | 0.44 (P=8 x10~7) | 0.33 (P=0.004) || -0.47 (P=2 x10~7)
0.0 || -0.44 (P=0.002) | -0.50 (P=0.0002) | -0.31(P=0.02) || -0.65 (P=5 x10~7)
3 SDR SIR SAR SDR-a
2.0 || 0.51 (P=3 x10-9) | 0.52 (P=2 x10-%) | 0.25 (P=0.02) 20.05 (P=0.64)
1.0 || 0.58 (P=8 x10~%) | 0.58 (P=5 x10~%) | 0.37 (P=0.001) -0.08 (P=0.48)
Onsetand Offset | s || ) 65 (p=3 x10-9) | 0.64 (P=1 x10-%) | 0.3 (P=0.008) -0.29 (P=0.012)
00| -0.18 (P=0.17) 0.1 (P=0.42) -0.40 (P=0.004) || -0.49 (P=0.0003)

Table 6. Spearman (rank) correlation between the F-Measure and different distortion measures considering fixed representa-

tions.
Evaluation || B I SDR \ SIR \ SAR I SDR-a \
log(1+[X]) || -0.041 (P=0.68) -0.06 (P=0.54) [ 0.31 (P=0.001) [ -0.48 (P=5 x10"")
Onset only 1 X| 0.42 (P=1 x107°) | 0.39 (P=7 x107°) | 0.26 (P=0.10) -0.36 (P=0.0002)
| X |2 -0.31 (P=0.006) | -0.27 (P=0.019) | -0.38 (P=0.0008) -0.15 (P=0.2)
] SDR SIR SAR SDR-a
log(1+[X[) [ 0.31(P=0.001) 0.30 (P=0.002) 0.03 (P=0.74) -0.27 (P=0.006)
Onset and Offset 1 X| 0.23 (P=0.019) 0.31 (P=0.001) | -0.12(P=0.21) | -0.26 (P=0.0095)
| X|? 0.06 (P=0.61) 0.11 (P=0.32) -0.18 (P=0.11) -0.11 (P=0.35)

the positive correlations for SDR. The SDR is obtained by av-
eraging the SDR amongst all frequency domain coefficients.
For the SDR-a, the high energy components have a greater
impact on the final results. Thus, high energy components
are estimated with greater noise than low energy components.
Therefore, it is not important to estimate the exact amplitude
of the high-energy components of the audio signal, as long as
the estimations are good enough to result in the detection of
the corresponding note events.

Although the obtained correlation values are low to aver-
age, the fact that the correlation between these measures is
positive and significant means that they have some relation
to transcription performance. Therefore, the distortion mea-
sures, especially the SIR, may provide clues regarding fac-
torization methods that can yield good transcription results.
However, these measures alone can not provide a definitive
conclusion on which variant/method is better. The results also
show that the factorization requirements for detecting only
onsets are slightly different than the requirements for detect-
ing both onsets and offsets. When only onsets are consid-
ered, the presence of artifacts has a greater impact on the fi-
nal results, but if offsets are also considered, the distortion in
each frequency band and the interference between the differ-

ent frequency bands becomes more relevant. The next section
presents some conclusions and guidelines for the use of fac-
torization methods for audio source separation and automatic
music transcription.

5. CONCLUSIONS

This paper discusses the correlation between the transcrip-
tion accuracy and the separation abilities of beta-divergence
non-negative factorization methods. Several automatic music
transcribers based on variants of NMF were built. They differ
in the spectral representation (logarithmic, magnitude and
power) and the values of 3 (0, 0.5, 1, 2). Following the fac-
torization process, a threshold was applied, yielding discrete
notes. The transcriptions yielded by each algorithm were
evaluated using the F-Measure (as defined in the MIREX
[20]), and the separation abilities were measured using the
SDR, SIR and SAR of the spectrogram reconstruction and
the SDR of the audio signal reconstruction, as defined by
Vincent et. al [22]. The Spearman (rank) correlation be-
tween the F-Measures and each of the distortion measures
was calculated. To the best of our knowledge this is the first
detailed experimental investigation of factorization methods



that considers both audio source separation and automatic
music trancsription.

The separation capabilities of the algorithm appear to
have only a partial effect on the transcription quality, with
a correlation lower than 0.5. The greatest correlation value
was found for the SIR measure. Thus, the most important
characteristic of the factorization is to maintain the orthog-
onality between the analyzed frequency components. If the
note offsets are not considered in the evaluation, then the
importance of the SAR ratio increases. Interestingly, the
correlation between the F-Measures and the SDR ratio in the
time-domain audio reconstruction is negative, that is, a closer
approximation of the audio signal as a linear combination of
base vectors does not imply a better transcription.

We conclude that the obtained F-Measures are related to
characteristics that are not necessarily the ones that will yield
a better audio source separation. Therefore, the separation
abilities of an algorithm should not be used as a conclusive
argument on why it should be used in music transcription. In
the absense of other information a good choice for both tasks
is to use a magnitude spectrum representation and a 3 value
of 0.5. Future work should aim at finding what are the charac-
teristic of a factorization that are changed by using particular
signal representations for 5 values, and how it correlates with
the F-Measure. Such characteristics are important because
if they could be calculated directly from the factorization re-
sults then they could help design AMT systems that optimize
a more problem specific objective function.
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