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ABSTRACT

We propose the use of Markov Logic Networks (MLNs)
as a highly flexible and expressive formalism for the har-
monic analysis of audio signals. Using MLNs information
about the physical and semantic content of the signal can
be intuitively and compactly encoded and expert knowl-
edge can be easily expressed and combined using a sin-
gle unified formal model that combines probabilities and
logic. In particular, we propose a new approach for joint
estimation of chord and global key The proposed model
is evaluated on a set of popular music songs. The results
show that it can achieve similar performance to a state of
the art Hidden Markov Model for chord estimation while
at the same time estimating global key. In addition when
prior information about global key is used it shows a small
but statistically significant improvement in chord estima-
tion performance. Our results demonstrate the potential of
MLNs for music analysis as they can express both struc-
tured relational knowledge as well as uncertainty.

1. INTRODUCTION
Content-based music retrieval is an active and important
field of research within the Music Information Retrieval
(MIR) community, that deals with the extraction and pro-
cessing of information from musical audio. Many applica-
tions, such as music classification or structural audio seg-
mentation, are based on the use of musical descriptors,
such as the key, the chord progression, the melody, or the
instrumentation. Often regarded as an innate human abil-
ity, the automatic estimation of music content information
proves to be a highly complex task, for at least two rea-
sons. The first reason is the great variability of musical
audio caused by the many modes of sound production and
the wide range of possible combinations between the var-
ious acoustic events which make music signals extremely
rich and complex from a physical point of view. The sec-
ond reason is that the information of interest is generally
very complex from a semantic point of view and many
musical descriptors, that are strongly correlated, are nec-
essary to characterize it. For instance, the chord progres-
sion is related to the metrical structure of a piece of mu-
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sic: chords change more often on strong beats than on
other beat positions in the measure [9]. The chord pro-
gression is also related to the musical key: some chords
are heard as more stable within an established tonal con-
text [13]. Recent work has shown that the estimation of
musical attributes would benefit from a unified musical
analysis [4, 14, 15, 21]. However, most of existing MIR
systems that estimate musical content from audio signals
have relatively simple probabilistic structure and are con-
strained by limited hypotheses that do not model the under-
lying complexity of music. The idea of reinforcing the per-
formance of object recognition by considering contextual
information has been explored in other fields than MIR,
such as computer vision [17].

As many real-world systems and signals, music signals
exhibit both uncertainty and complex relational structure.
Until recent years, these two aspects have been generally
treated separately, probability being the standard way to
represent uncertainty in knowledge, while logical repre-
sentation being used to represent complex relational infor-
mation. However, alternative approaches towards a uni-
fication have been proposed within the emerging field of
Statistical Relational Learning (SRL) [8]. Models in which
statistical and relational knowledge are unified within a
single representation formalism have emerged [6, 10, 18].
Among them, Markov Logic Networks (MLNs) [27], that
combine first-order logic and probabilistic graphical mod-
els (Markov networks) have received considerable atten-
tion in recent years. Their popularity is due to their ex-
pressiveness and simplicity for compactly representing a
wide variety of knowledge and reasoning about data with
complex dependencies. Moreover, multiple learning and
inference algorithms for MLNs have been proposed, for
which open-source implementations are available, for ex-
ample theAlchemy1 and ProbCog2 software packages.
MLNs have thus been used for many tasks in artificial in-
telligence (AI), such as meaning extraction [2], collective
classification [5], or entity resolution [32].

As far as we know, MLNs have not been used yet for
music content processing. Chord recognition is one of the
most popular MIR tasks as reflected by the number of re-
lated papers and the increasing number of contributions to
the annual MIREX3 evaluation. We propose MLNs as a
highly flexible and expressive modeling language for es-

1 http://alchemy.cs.washington.edu
2 http://ias.cs.tum.edu/research/probcog
3 http://www.music-ir.org/mirex/



timating the chord progression of a piece of music. The
main contribution is to show how various types of informa-
tion about the physics and the semantics of the signal can
be intuitively and compactly encoded in a unified formal-
ism. In addition, MLNs allow incorporating expert knowl-
edge in the model in a flexible fashion. In particular, we
show how prior information about the main key of an an-
alyzed excerpt can be used to enhance the chord progres-
sion. We also propose a new approach for the estimation
of harmonic structure and global key, in which the two at-
tributes are estimated jointly and benefit from each other.

2. BACKGROUND
Previous approaches for chord estimation can be classified
into two categories: approaches based on pattern-matching
and probabilistic approaches. One of the advantages of
probabilistic approaches is that they can model uncertainty
and variability. Indeed, the realization of a chord produced
in different conditions (instrumentation, dynamics, room
acoustics, etc.) can result in significantly different signal
observations. Moreover, probabilistic models allow incor-
porating context information to improve chord estimation.
For example, chord transitions based on musical rules can
be embedded in the model to improve estimation. A large
number of existing algorithms are based on the use of Hid-
den Markov Models (HMM), seee.g.[29, 31]. One of the
reasons is that chord transition rules may be incorporated
into the state transition matrix of the HMM. In the frame-
work of HMMs, additional context information, such as
the key [4, 14], the meter [23] or the structure [16], can
also be incorporated to improve the estimation.

Other statistical machine learning approaches for chord
estimation include conditional random fields [3], which
compared to HMMs do not require the observation vec-
tors to be conditionally independent. The use of N-grams
[30, 33] allows information about longer range chord de-
pendencies to be considered. In contrast, HMMs make the
Markovian assumption that each chord symbol only de-
pends on the preceding one. In some of these approaches,
context information is incorporated, such as in the graphi-
cal probabilistic model [20] where contextual information
related to the meter is used, or in [15], where a 6-layered
dynamic Bayesian network jointly modeling key, metric
position, chord and bass pitch class is proposed.

Existing approaches for chord recognition, in particu-
lar HMMs, have been quite successful in modeling chord
sequences. However, their limited probabilistic structure
makes the incorporation of additional contextual informa-
tion a complex task. More specifically, concerning chords
and key interaction, state-of-the-art approaches may not
fully exploit interrelationship between musical attributes,
as in [24] and [19] where key estimation is based on the
chord progression, but the chord estimation part does not
benefit from key information. Other approaches [28] do
not allow easily introducing expert knowledge (such as
musical information about the key progression) that could
help music content analysis. In this paper, we intend to
show how such relational cues can be compactly modeled
within the framework of Markov logic.

3. MARKOV LOGIC NETWORKS
A Markov Logic Network (MLN) is a set of weighted first-
order logic formulas [27], that can be seen as a template
for the construction of probabilistic graphical models. We
present a short overview of the underlying concepts with
specific examples from the modeling of chord structure.
A MLN is a combination of Markov networks and first-
order logic. AMarkov networkis a model for the joint
distribution of a set of variablesX = (X1, X2, ..., Xn) ∈
X [25], that is often represented as a log-linear model:

P (X = x) =
1

Z
exp(

∑

j

wjfj(x)) (1)

whereZ is a normalization factor, andfj(x) are features
of the statex (x is an assignment to the random variables
X). Here, we will focus on binary features,fj(x) ∈ 0, 1.

A first-order domain is defined by a set ofconstants
(that is assumed finite) representing objects in the domain
(e.g., CMchord, GMchord) and a set ofpredicatesrepre-
senting properties of those objects (e.g., IsMajor(x), IsHap-
pyMood(x)) and relations between them (e.g., AreNeigh-
bors(x, y)). A predicate can begroundedby replacing its
variables with constants (e.g., IsMajor(CMchord), IsHap-
pyMood(CMchord), AreNeighbors(CMchord, GMchord)).
A world is an assignment of a truth value to each possible
ground predicate (or atom). Afirst-order knowledge base
(KB) is a set of formulas in first-order logic, constructed
from predicates using logical connectives and quantifiers.
A first-order KB can be seen as a set of hard constraints
on the set of possible worlds: if a world violates even one
formula, it has zero probability. Table 1 shows a simple
KB. In a real world scheme, logic formulas aregenerally
true, but notalwaystrue. The basic idea in Markov logic
is to soften these constraints to handle uncertainty: when
a world violates one formula in the KB, it is less probable
than one that does not violate any formulas, but not im-
possible. The weight associated with each formula reflects
how strong a constraint is, i.e. how unlikely a world is in
which that formula is violated.

Table 1. Example of a first-order KB and corresponding
weights in the MLN.

Knowledge Logic formula Weight

A major chord implies an
happy mood.

∀ x IsMajor(x)⇒ IsHappy-
Mood(x)

w1 =
0.5

If two chords are neighbors,
either the two are major
chords or neither are.

∀ x ∀ y AreNeighbors(x,
y) ⇒ (IsMajor(x)⇔ IsMa-
jor(y))

w2 =
1.1

Formally, aMarkov logic networkL is defined [27] as
a set of pairs(Fi, wi), whereFi is a formula in first-order
logic andwi is a real number associated with the formula.
Together with a finite set of constantsC (to which the pred-
icates appearing in the formulas can be applied), it defines
a ground Markov networkML,C , as follows:

1. ML,C contains one binary node for each possible
grounding of each predicate appearing inL. The
node value is 1 if the ground predicate is true, and
0 otherwise.



2. ML,C contains one feature for each possible ground-
ing of each formulaFi in L. The feature value is 1
if the ground formula is true, and 0 otherwise. The
feature weight is thewi associated withFi in L.

A ground Markov logic network specifies a probability
distribution over the set of possible worldsX . The joint
distribution of a possible worldx is:

P (X = x) = 1
Z

exp(
∑

i wini(x))

=
exp(

P

i
wini(x))

P

x′∈X
exp(

P

i
wini(x′))

where the sum is over indices of MLN formulas andni(x)
is the number of true groundings of formulaFi in x. (i.e.
ni(x) is the number of times theith formula is satisfied by
possible worldx).

Figure 1 shows the graph of the ground Markov network
defined by the two formulas in Table 1 and the constants
CMchord and GMchord. Each possible grounding of each
predicate becomes a node in the corresponding Markov
Network. There is an arc in the graph between each pair of
atoms that appear together in some grounding of one of the
formulas. The grounding process is illustrated in Figure 2.

Figure 1. Ground Markov network obtained by applying
the formulas in Table 1 to the constants CMchord (CM)
and GMchord (GM).

Figure 2. Illustration of the grounding process of the
Ground Markov network in Figure 1. Adapted from [12].

4. PROPOSED MODEL
In this section, we show how we can move from a standard
HMM to a MLN, resulting in an elegant and concise rep-
resentation with flexible modeling of context information.

4.1 Baseline HMM
We utilize a baseline model for chord estimation proposed
in [22,23] and briefly described here. The front-end of our
model is based on the extraction of chroma feature vec-
tors [7] that describe the signal. The chroma vectors are
12-dimensional vectors that represent the intensity of the
twelve semitones of the Western tonal music scale, regard-
less of octave. We perform abeat synchronousanalysis

and compute one chroma vector per beat4 . A chord lexi-
con composed ofI = 24 major (M) and minor (m) triads
is considered. The chord progression is then modeled as
an ergodic 24-state HMM, each hidden statesn (n denotes
the time index) corresponding to a chord of the lexicon
(CM, . . . , BM, Cm, . . . , Bm), and the observations being
the chroma vectorson.

The HMM is specified using three probability distribu-
tions: the distributionP (s0) over initial states, the tran-
sition distributionP (sn|sn−1) and the observation distri-
butionP (on|sn). The state-conditional observation prob-
abilities P (on|sn) are obtained by computing the corre-
lation between the observation vectors (the chroma vec-
tors) and a set of chord templates which are the theoretical
chroma vectors corresponding to theI = 24 major and
minor triads. A state-transition matrix based on musical
knowledge [19] is used to model the transition probabil-
ities P (sn|sn−1), reflecting chord transition rules. The
chord progression over time is estimated in a maximum
likelihood sense by decoding the underlying sequence of
hidden chordsS = (s1, s2, . . . , sN) from the sequence of
observed chroma vectorsO = (o1, o2 . . . , oN ) using the
Viterbi decoding algorithm :

Ŝ = argmax
S

(p(S, O)). (2)

4.2 MLN for Chord Recognition
We now present a MLN for the problem of chord estima-
tion, that is derived from the baseline HMM. MLNs are
more general than HMMs, and we describe how the HMM
structure can be expressed in a straightforward way using
a MLN. Our MLN for chord recognition consists of a set
of first-order formulas and their associated weights. It is
described in Table 2. Given this set of rules with attached
weights and a set of evidence literals, described in Table
3, Maximum A Posteriori (MAP) inference is used to infer
the most likely state of the world.

Let ci, i ∈ [1, 24] denote the 24 chords of the dictio-
nary, andon, n ∈ [0, N − 1] denote the succession of ob-
served chroma vectors, withN being the total number of
beat-synchronous frames of the analyzed song. The chord
estimation problem can be formulated in Markov logic by
defining formulas in the MLN using an unobserved predi-
cateChord(ci, t), meaning that chordci is played at frame
t, and two observed ones,Observation(on, t), meaning
that we observe chromaon at framet, andSucc(t1, t2),
meaning thatt1 and t2 are successive frames. The con-
straints given by the prior, observation and transition prob-
abilities of the baseline HMM form the abstract model.
They are simply described by three MLN generic formulas.
For each conditional distribution, only mutually exclusive
and exhaustive sets of formulas are used,i.e. exactly one of
them is true. For instance, there is one and only one possi-
ble chord per frame. This is indicated in Table 2 using the
symbol!. The evidence consists of a set of ground atoms
that give the chroma observations corresponding to each
frame, and the temporal succession of frames over time.
The query is the chord progression.

4 This is done by integrating a beat-tracker as a front-end of the system
[26].



Table 2. Chord recognition MLN used for inference.
Predicate declarations

Observation(chroma!, time)
Chord(chord!, time)

Succ(time, time)

Weight Formula
Prior observation probabilities:

log(P (CM(t = 0))) Chord(CM, 0)
· · · · · ·

log(P (Bm(t = 0))) Chord(Bm, 0)

Probability that the observation (chroma) has been emittedby a chord:
log(P (o0|CM)) Observation(o0, t) ∧ Chord(CM, t)

log(P (o0|C#M)) Observation(o0, t) ∧ Chord(C#M, t)
· · · · · ·

log(P (oN−1|Bm)) Observation(oN−1, t) ∧ Chord(Bm, t)

Probability to transit from one chord to another:
log(P (CM |CM)) Chord(CM, t1) ∧ Succ(t2, t1) ∧ Chord(CM, t2)

log(P (C#M |CM)) Chord(CM, t1) ∧ Succ(t2, t1) ∧ Chord(C#M, t2)
· · · · · ·

log(P (Bm|Bm)) Chord(Bm, t1) ∧ Succ(t2, t1) ∧ Chord(Bm, t2)

Table 3. Evidence for MLN chord estimation.
// We observe a chroma at each time frame:

Observation(o0, 0)
· · ·

Observation(oN−1, N − 1)
// We know the temporal order of the frames:

Succ(1,0)
· · ·

Succ(N − 1, N − 2)

In many existing MLNs weights attached to formulas are
obtained from training. However, we follow the baseline
approach and use weights based on musical knowledge.
They are directly obtained using the conditional prior, ob-
servation and transition probabilities of the baseline HMM.

The conditional observation probabilitiesare described
using a set of conjunctions of the form:

∀t ∈ [0, N − 1] log(P (on|sn = ci)) (3)

Observation(on, t) ∧ Chord(ci, t)

for each combination of observationon and chordci. Con-
junctions, by definition, have but one true grounding each.
According to Eq.(2), the weight associated with each con-
junction is set tow = log(P (on|sn = ci)) , with P (on|sn)
denoting the corresponding observation probability.

The transition probabilities are described using:
∀t1, t2 ∈ [0, N − 1] log(P (sn = ci|sn−1 = cj)) (4)

Chord(ci, t1) ∧ Succ(t2, t1) ∧ Chord(cj , t2)

for all pairs of chords(ci, cj), i, j ∈ [1, 24], and with
p = P (sn|sn−1) denoting the corresponding transition
probability.

The prior observation probabilities are described using:
log(P (s0 = ci)) Chord(ci, 0) (5)

for each chordci, i ∈ [1, 24] and withP (s0) denoting the
prior distribution of states.

4.3 Including Prior Information on Key
In this section, we show how prior information about the
key of the excerpt can be incorporated in the model. We
assume that we know the keyki, i ∈ [1, 24] of the ex-
cerpt. Key is added as a functional predicate in Table 2
(Key(key!, time)) and given as evidence in the MLN by
adding evidence predicates in Table 3 of the form:

Key(ki, 0), Key(ki, 1), · · · , Key(ki, N − 1) (6)

Relying on the hypothesis that some chords are heard as
more stable within an established tonal context [13], addi-
tional rules about key and chord relationship are incorpo-
rated in the model. Letki, i ∈ [1, 24] denote the 24 major
and minor keys andcj, j ∈ [1, 24] denote the 24 chords.
For each pair of key and chords(ki, cj), we add the rule:

log(pij) Key(ki, t) ∧ Chord(cj , t) (7)

where the valuespij , i, j ∈ [1, 24] define the prior distri-
bution of chords(c1, . . . , c24) given a keyki. They are ob-
tained from a set of key templates that represent the impor-
tance of each triad within a given key. The key templates
are 24-dimensional vectors, each bin corresponding to one
of the 24 major and minor triads. Two key templates, orig-
inally presented in [24], are considered. The first one,
referred to as “weighted main chords relative” (WMCR)
template, is derived from music knowledge, and attributes
non-zero values to the bins corresponding to the most im-
portant triads in a given key (those built on the tonic, the
subdominant and the dominant, plus the chord relative to
the one built on the tonic) [13]. The second one, referred
to as “cognitive-based” (CB) template, is built relying on a
cognitive experiment conducted by Krumhansl [13], giving
values corresponding to the rating of chords in harmonic-
hierarchy experiments. Templates corresponding to C ma-
jor (top) and C minor (bottom) keys are shown in Figure 3.
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Figure 3. Key templates for chord and key modeling.

4.4 Joint Estimation of Chords and Key
The key can be estimated jointly with the chord progres-
sion by simply removing the evidence predicates about key
listed in Eq. (6), that give prior information about the key
context, and by consideringKey as a query along with
Chord. In addition, we add rules in Table 2 to model key
modulations by using the set of formulas:

log(pkey
ij ) Key(ki, t1) ∧ Succ(t2, t1) ∧ Key(kj, t2)

for all pairs of keys(ki, kj), i, j ∈ [1, 24]. The values
p

key
ij , that reflect probability to transit from one key to an-

other, are derived from perceptual tests about proximity
between the various musical keys [13]. However, because
we focus on global key information in this paper, we man-
ually give a high weight to the formulas corresponding to
self-transitions (transition between two same keys) to favor
constant key over the analyzed song.

4.5 Inference
The inference step consists of computing the answer to a
query, here the chord progression and the key. Specifically,
Maximum Probability Explanation (MPE), often denoted
as Maximum A Posteriori (MAP) inference, finds the most
probable state given the evidence. For inference, we used



the toulbar2 branch & bound MPE inference [1], as imple-
mented in the ProbCog toolbox. The graphic interface pro-
vided in ProbCog allows convenient editing of the MLN
predicates and formulas, which are given as input to the al-
gorithm. The answer to the query can then be directly com-
puted. Although manageable on a standard laptop, the in-
ference step has a high computational cost compared to the
baseline algorithm (≈ 2 min (chord only MLN), ≈ 4 min
(key MLN) against6 sec (HMM, MATLAB) for processing
60s of audio on a MacBook Pro2.4GHz Intel Core 2 Duo
with 2GB RAM).

5. EVALUATION
The proposed model has been tested on a set of hand-
labeled Beatles songs, a popular database used for the chord
estimation task [11]. All the recordings are polyphonic,
multi-instrumental songs containing drums and vocal parts.
We map the complex chords in the annotation (such as ma-
jor and minor6th, 7th, 9th) to their root triads. The original
set comprises 180 Beatles songs but we reduced it to 141
songs, removing songs containing key modulations. The
list of this subset can be found in [21].

Label accuracy (LA) is used to measure how the esti-
mated chord/key is consistent with the ground truth. The
LA chord estimation results correspond to the mean and
standard deviation of correctly identified chords per song.
The LA key estimation results indicate the percentage of
songs for which the key has been correctly estimated. The
results obtained with the various configurations of the pro-
posed model are described in Tables 4 and 5. Paired sam-
ple t-tests at the5% significance level are performed to de-
termine whether there is statistical significance in the ob-
served accuracy results between different configurations.
Table 4. Chords label accuracy (LA) results. HMM: baseline
HMM, Chord MLN: chord-only MLN, Prior key MLN: MLN
with prior key information, using the WMCR and CB key tem-
plates,Joint chord/key MLN: MLN for joint estimation of chords
and key. Stat. Sig.: statistical significance between the model
Chord MLNand others.

Chord LA Stat. Sig.
HMM 72.49 ± 14.68 no

Chord MLN 72.33 ± 14.78
Prior key MLN, WMCR 73.00 ± 13.91 yes

Prior key MLN, CB 72.22 ± 14.48 no
Joint chord/key MLN 72.42 ± 14.46 no

Table 5. Key label accuracy (LA) results.Joint chord/key MLN:
MLN for joint estimation of chords and key.DTBM-chroma
and DTBM-chord: Direct Template-Based Method. Exact Es-
timation EE, Mirex EstimationME and Exact + NeighborE+N
scores.Stat. Sig.: statistical significance between the modelJoint
chord/key MLNand others.

EE EE E+N Stat. Sig.
Joint chord/key MLN 82.27 88.09 94.32

DTBM-chord 48.59 67.39 89.44 yes
DTBM-chroma 75.35 85.14 95.77 yes

The main interest of the proposed model lies in its sim-
plicity and expressivity for compactly encoding physical
content and semantic information in a unified formalism.
Results show that the HMM structure can be concisely and
elegantly embedded in a MLN. Although the inference al-
gorithms used for each model are different, a song by song
analysis shows that chord progressions estimated by the
two models are extremely similar and the difference in the
label accuracy results is not statistically significant.

To illustrate the flexibility of the MLN formalism, we
also tested a scenario where some partial evidence about
chords was added by adding evidence predicates of the
form Chord(cGT

i , 0), Chord(cGT
i , 9), Chord(cGT

i , 19),
· · · , Chord(cGT

i , N − 1), as prior information of10% of
the ground-truth chordscGT

i , i ∈ [1, 24]. We tested this
scenario on the songA Taste of Honey, for which thechord
only MLNestimation results are poor. They were increased
from 55.69% to 77.04%, which shows how additional evi-
dence can be easily added and have a significant effect.

The MLN formalism incorporates prior information
about key in a simple way. The CB key templates are not
relevant for modeling chords given a key on our test-set,
whereas the results are significantly better with the WMCR
templates, that are more consistent with the harmonic/tonal
content of our test-set by clearly favoring the main triads
given a key. Incorporating prior information about key
with minimal model changes improves the chord estima-
tion results, and the difference is significant (Table 4).

In the Prior key MLN, coherent chords with the key
context are favored, removing some errors obtained with
the chord-only MLN. For instance, Figure 4 shows an ex-
cerpt ofEleanor Rigby, which is in E minor key. Between
24−30s, the underlying Em harmony is disturbed by pass-
ing notes in the voice. The prior key information favors Em
chords and reduces these errors. Prior key information can
also reduce confusions due to ambiguous mapping. For
instance, the songThe Word, in DM key, contains several
Ddom7 chords (D-F#-A-C), which are mapped to DM (D-
F#-A) chords in our dictionary. Many of them are esti-
mated as Dm chords with thechord MLN, whereas they
are annotated as DM chords with thePrior key MLN. In-
troducing prior key information results in chord estimation
that is more coherent with the tonal context.

By considering the key as a query, the proposed model
can jointly estimate chords and key. Key estimation is
based on the harmonic context, while the chords are es-
timated given a tonal context. Key information slightly
improves the chord estimation results, but the difference
is not statistically significant (see Table 4). Results in Ta-
ble 5 show that the tonal context can be fairly inferred from
the chords. Song by song analysis shows that harmonically
close errors in the chord estimation (such as dominant or
subdominant chords) do not affect the key estimation. In-
deed, most of the keys are either correctly estimated or cor-
respond to a neighboring key, as indicated by the MIREX
2007 key estimation score5 (88.09%) and theN+E score
(94.32%) that includes harmonically close keys6 .

Following [24, 28], we compare our key estimation re-
sults to adirect template-based method(DTBM) that can
be viewed as applying the Krumhansl-Schmuckler (K-S)
key-finding algorithm [13] to the analyzed excerpt. We
compute the correlation between a 12-dimensional vector
that averages chroma vectors over time and the 24 key tem-
plates (DTBM-chroma) by Krumhansl. The estimated key
is selected as the one that gives the highest value. To com-

5 1 for correct key, 0.5 for perfect fifth detection, 0.3 for relative ma-
jor/minor, and 0.2 for parallel major/minor

6 Parallel, relative, dominant or subdominant.



Figure 4. Chord estimation results for an excerpt of the songEleanor Rigby.

pare the performances of thePrior key MLNwith a base-
line algorithm that estimates key from chords after they are
predicted, we also report results obtained with a slightly
modified version of the K-S algorithm that uses estimated
chords instead of chroma: we compute the correlation be-
tween a 24-dimensional vector that accumulates the esti-
mated chords over time (considering their duration) and
the CB / WMCR templates (DTBM-chord) 7 . Results are
presented in Table 5. In theDTBM-chordapproach, errors
in the estimation of the chord progression are propagated
to the key estimation step, which explains the lowEE re-
sults obtained. The results obtained withDTBM-chroma
approach are higher, but in both cases, our model performs
significantly better than the DTBM methods.

6. CONCLUSION AND FUTURE WORKS
In this article, we have introduced Markov logic networks
as an expressive formalism to estimate music content from
an audio signal. The results obtained with thechord MLN
for the task of chord progression are equivalent to those
obtained with the baselineHMM. Moreover, it allows in-
troducing expert knowledge to enhance the estimation. We
have focused on global key information. The model can be
extended to local key estimation, which will be the purpose
of future work. The proposed model has a great potential
of improvement in the future. Context information (such
as metrical structure, instrumentation, music knowledge,
chord patterns, etc.) can be compactly and flexibly em-
bedded in the model moving toward a unified analysis of
music content. Training approaches will be considered. In
particular, we will focus on the task of constructing new
formulas by learning from the data and creating new pred-
icates by composing base predicates, to compactly cap-
ture much more general regularities (predicate invention).
As far as we know, Markov logic network have not been
used for music content processing yet. We believe that this
framework that combines ideas from logic and probabili-
ties opens new interesting perspectives for our field.
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