An empirical investigation of
stacking for music tag annotation

Anthony Theocharis
Department of Computer Science
University of Victoria, Canada
Email: anthonyt@uvic.ca

Abstract—Automatic tag annotation is one of the most im-
portant problems in multimedia information retrieval. It has
been motivated by the large amount of unstructured tag an-
notation data provided by internet users and can be viewed as a
variation of multi-label classification with special characteristics
and constraints. Stacking is a technique in which the outputs
(binary or probabilistic) of a set of binary classifiers (one for
each tag) are used as input to a second stage of classification
that attempts to exploit latent relationships between tags. This
technique (known under a variety of names) has been used in
a variety of multimedia tag annotation systems. In this paper
we survey these approaches, clarify how stacking system are
structured, and empirically investigate stacking using a variety
of classifier combinations in the context of tagging pieces of music.

I. INTRODUCTION

Increases in network bandwidth, disk storage and computing
speed have made possible the creation of large collections of
multimedia objects that can be accessed by anyone with an
internet connection. Organizing these large collections for ef-
fective retrieval is one of the biggest challenges in multimedia
research. The term “tag” refers to any keyword associated to
an article, image, video, or piece of music on the web. In the
past few years there has been a gradual shift from manual
annotation into fixed hierarchical taxonomies to collaborative
social tagging where any user can annotate multimedia objects
with tags (so called folksonomies) without conforming to a
fixed hierarchy and vocabulary. For example, Last.fm is a
collaborative social tagging network which collects roughly 2
million tags (such as “saxophone”, “mellow”, “jazz”, “happy”)
per month [1] and uses that information to recommend music
to its users. Another source of tags are “games with a purpose”
[2] where people contribute tags as a by-product of doing
a task that they are naturally motivated to perform, such as
playing casual web games. For example TagATune [3] is a
game in which two players are asked to describe a given music
clip to each other using tags, and then guess whether the music
clips given to them are the same or different.

Tags can help organize, browse, and retrieve items within
large multimedia collections. As evidenced by social sharing
websites including Flickr, Picasa, Last.fm, and You Tube, tags
are an important component of what has been termed as “Web
2.0”. The focus of this paper is systems that automatically pre-
dict tags (sometimes called autotags) by analyzing multimedia

Matt Pierce
Department of Computer Science
University of Victoria, Canada
Email: mpierce@uvic.ca

George Tzanetakis
Department of Computer Science
University of Victoria, Canada
Email: gtzan@cs.uvic.ca

content without requiring any user annotation. Such systems
typically utilize signal processing and supervised machine
learning techniques to “train” autotaggers based on analyzing
a corpus of manually tagged multimedia objects.

There has been considerable interest for automatic tag
annotation in multimedia research. Automatic tags can help
provide information about items that have not been tagged
yet or are poorly tagged. This avoids the so called “cold-start
problem” [4] in which an item can not be retrieved until it has
been tagged. Addressing this problem is particularly important
for the discovery of new items such as recently released music
pieces in a social music recommendation system.

From a machine learning perspective automatic tag annota-
tion can be viewed as a variation on multi-label classification.
In contrast to traditional classification in which each item is
assigned one of k£ mutually exclusive class labels, in multi-
label classification each item can be assigned to multiple labels
(tags). Many different approaches to multi-label classification
have been proposed in the literature. They leverage feature
information computed from a training set of examples anno-
tated with multiple labels to train models that can subsequently
be used to predict labels for new examples. There are some
unique characteristics and related challenges when the ground
truth tag data is obtained from the web. The ground truth
training data is noisy in the sense that the tags can contain
synonyms (“calm” and “mellow”), misspellings (“chello”)
and hierarchical relations (“symphony” and “classical”). In
addition the data is sparse meaning that there can be few
training examples for a given tag. Finally, the absence of a tag
cannot always be taken to mean that the tag is not applicable,
as it might be the case that the users have simply not yet
considered that tag for the particular multimedia item.

Stacking (or stacked generalization) is a technique in which
the output of a first classification stage is used as the input to
a second classification stage. In the context of automatic tag
annotation stacking consists of training a set of V' classifiers
(one for each tag) for the first stage. The outputs (binary or
probabilistic) of each classifier are then used as a new feature
vector to train a second stage of V classifiers. The classifiers
in stage 1 are each trained independently and therefore can
not take into account relations and dependencies between tags.
The second stacking stage attempts to exploit these relations
to improve tag prediction.

Although stacking is frequently used in the multimedia liter-
ature, the terminology is inconsistent and authors have used a
variety of different names for this process. We define stacking
more formally, connect it with multi-label classification, and
cast previous work using a more consistent terminology. We
also empirically investigate different combinations of multi-
label classifiers in a stacking architecture using two publicly
available datasets for music tag annotation and show that it
consistently improves annotation performance.

II. RELATED WORK

Work on associating music with text using audio content
analysis and machine learning started as early as 2002 [5],
not using tags per se, but using keywords extracted from
web-pages that ranked highly in search engine results for
particular artists. Around 2007-2008, as social tag annotation
became more common, some of the first papers that focused
on automatic tag annotation for music started appearing in the
literature using different classification approaches and audio
feature sets. For example, AdaBoost. MH [6] is used for tag
prediction in [7]. A Gaussian Mixture Model over the audio
feature space is trained for each word in a vocabulary in
the seminal paper by Turnbull et all [8] which also provided
the CAL500 dataset used in this paper and since then has
frequently been used to evaluate tag annotation systems. Since
then several systems of music tag annotation have been pro-
posed and in some cases evaluated in the Music Information
Retrieval Evaluation Exchange (MIREX) [9]. Representative
examples include: support vector machines (with stacking)
[10], [11], topic models using Latent Direchlet Allocation
(LDA) [12], codeword bernoulli average [13], cost-sensitive
stacking using Support Vector Machines and AdaBoost [14],
and parallel factor analysis [15].

A thorough overview of multi-label classification methods
is provided in [16]. They classify approaches to multi-label
classification into two major groups. Problem transformation
methods try to perform multi-label classification by transform-
ing the problem to a series of simpler multi-class or binary
classification problems (for which there is a large established
literature) and combining their results. Algorithm adaptation
methods work by adapting/extending existing multi-class and
binary classification algorithms to handle the multi-label case.
We comment briefly on some of the multi-label algorithms that
are particular relevant to this paper and provide more details
about their specifics later when describing our experiments.
A common problem transformation approach (termed PT4 in
[16]) is to train |L| binary classifiers (one for each label) by
using all the instances that contain [as positive examples and
all the remaining ones as negative examples. For classification
of a new instance z, this method outputs as a set of labels
the union of the labels that are output by the |L| classifiers.
Another approach mentioned, but not evaluated, in [16] is
PT5 in which each example (x,Y") is decomposed into |Y|
examples (z,[) with a single label each. The resulting dataset
can be used for training any standard multi-class classification
algorithm with the added characteristic that the same feature

vector will be used in the training sets of several classes
that correspond to all the labels for that instance. To classify
new instances, a classifier with probabilistic outputs (or more
generally a distribution of scores) over all labels in L is then
used. In terms of algorithm adaptation methods is straightfor-
ward to extend the K-Nearest Neighbor algorithm to handle
the multi-label case [17]. The well-known C4.5 algorithm for
decision tree learning can also be modified to handle multi-
label data by modifying the entropy calculation and allowing
multiple labels in the leaves of the decision tree. Adaboost. MH
and AdaBoost.MR [6] are two extensions of the AdaBoost
algorithm for multi-label classification.

Automatic tag annotation refers to multi-label classification
problems in which the labels (tags) are typically obtained so-
cially by users. It can be viewed as a special case of multi-label
classification with constraints related to tag sparsity, imbalance
between positive and negative examples, and synonymity.
Research in automatic tag annotation often originates in the
field of multimedia retrieval and, frequently, the connections to
multi-label classification are not well understood. In addition
to the examples of music tagging mentioned above automatic
tagging has also been explored in image [18] and video [19]
annotation. An alternative to treating automatic tag annotation
as a multi-label classification problem is to treat it as a
ranking problem in which, for each new instance, the full tag
vocabulary is sorted based on some criterion (examples include
AdBoost. MR [6] or PAMIR [20]). In this case a secondary
thresholding step can be used to obtain the tags.

Stacking (or stacked generalization) is a term used to
describe the process of using the output of a classification
stage as an input feature vector to a subsequent classification
stage. It has been used in classic multi-class classification [21]
but more recently it has also been employed in problems
with a more complicated structure, often appearing under
different names such as anchor-based classification [22] and
semantic space retrieval [23]. To the best of our knowledge,
the first use of stacking for multi-label classification was
introduced in the context of classifying text documents with
multiple labels [24]. In the context of music, tag annotation
was originally introduced in [10] and subsequently used in
[14], [11]. It also related to the more general techniques of
cascaded classification in which the output of several different
classification stages are combined in a similar fashion. Cas-
caded classification models have been used in computer vision
for scene understanding [25].

ITII. PROBLEM FORMULATION

A. Tagging

We consider a tag vocabulary V' that consists of |V| unique
words (tags). Each tag refers to a semantic concept without any
restrictions, for example “rock”, “saxophone”, or “ambient”.
The goal of annotation is to find a set ¥ = y;...yny of
N words that are semantically meaningful for the particular
query audio track. The annotation system is trained using a
collection of items (tracks in the case of music) that are each
annotated with a set of tags from the vocabulary. Traditional

Stacked Generalization

Features / Tags

Stage 1)
Classification | (Maive Bayes, C4.5, kNN, MLKNN, or SVM)

nitial Tag
Prediction,

L

(Output of V Classifiers, one for each tag)

Stage 2
eature Vector,

(Binary or probabilistic outputs from
Stage 1 classification)

Stage2)
Classification | (Naive Bayes, C4.5, kNN, MLKNN, or SVM)

dencies and rel B

Stacked Tag
Predictions.

(Tag dep
taken into consideration)

Fig. 1. Block diagram of stacking

single-label classification learns from a set of examples that
are each associated with a single label, [, from a set of disjoint
labels L, |L| > 1. If |L| = 2 then the learning problem is
called binary classification, while |L| > 2 then it is called a
multi-class classification problem. In multi-label classification
the examples are associated with a set of labels Y C L.

B. Stacking

Stacking is a method of combining the outputs of multiple
independent classifiers for multi-label classification. The first
step of using stacking for multi-label classification is to train
|V| individual tag classifiers using a training set (x;,y;),
where z; denotes the feature vector for instance ¢ and y; is the
associated set of labels. The PT4 or PTS problem transforma-
tion methods, described above, can be used to convert the input
training set into training sets appropriate for the individual
single-label classifiers. The output of these classifiers (binary
or probabilistic) f1(x), f2(x), ..., fjv|(x) where x is the input
feature vector that is then used as a feature to form a new
feature set. Let the new feature set be z1,22,...2;y|. This
feature set, together with the original ground truth labels
(zi,yi), is then used for training a second stage of stacking
classifiers. The goal is to have the stacking classifiers make
use of information like the correlation between tags or the
accuracy of the first stage classifier to improve the annotation
performance. For example suppose that the stage 1 perfor-
mance for the tag “opera” is not very good but that most of
the examples with the tag “opera” receive high probabilities
for the tags “classical” and “voice” at stage 1. The stacking
stage 2 can take into account this information from other tags
and improve annotation performance: something not possible
during stage 1, in which each tag is treated independently.
Figure 1 shows this process as a block diagram.

IV. EXPERIMENTS
A. Audio Feature Extraction

Each audio track is represented as a single feature vector.
Even though much more elaborate audio track representations

have been proposed in the literature we like the simplicity
of machine learning and similarity calculation using single
feature vectors per audio clip. It has been shown that such
song-level features perform quite well [26].

The spectral features used for our experiments are Ze-
roCrossings, Spectral Centroid, Roll-Off, Flux and Mel-
Frequency Cepstral Coefficients (MFCC) (13 coefficients) [27]
for a total of 17 features every 20 milliseconds. In addition
we compute 14 features related to pitch/chroma every 20
milliseconds. To capture the feature dynamics we compute a
running mean and standard deviation over the past M frames:

m®(t) = mean[®(t — M + 1), .., D(1)] (D)
s®(t) = std[®(t— M +1),..,P(¢)] (2)

where ®(t) is the original feature vector. Notice that the
dynamics features are computed at the same rate as the
original feature vector but depend on the past M frames (e.g.
M=40, corresponding approximately to a so-called “texture
window” of 1 second). This results in a feature vector of 62
dimensions at the same rate as the original 31-dimensional
one. The sequence of feature vectors is collapsed into a
single feature vector representing the entire audio clip by
taking again the mean and standard deviation across the 30
seconds (the sequence of dynamics features) resulting in the
final 64-dimensional feature vector per audio clip. Due to
space constraints we can not elaborate on the exact details
of each feature but they are standard audio features used
in music information retrieval computed using the freely
available Marsyas software framework .

B. Datasets

We tested the system on two publicly available audio data-
sets. The Computer Audition Lab 500 (CAL500) [8] dataset
is a selection of 500 Western popular songs recorded by 500
different artists, from between 1958 and 2008. Annotations
for the files were collected from different people (a minium
of three listeners per track and all using the same predefined
vocabulary), and tags are applied in the dataset if more than
two people used the same tag for the same song. The dataset
includes 174 different tags describing the presence or absence
of 33 instruments, 16 vocal characteristics, 47 genres, 18
emotions, 15 preferred listening scenarios and 12 concepts
such as tempo or sound quality. For our experiments, we used
only 493 of the songs, discarding any that were shorter than 30
seconds. In the resulting dataset, each song is annotated with
a minimum of 3 and a maximum of 48 tags. Each tag has a
minimum of 5 and a maximum of 437 examples, for a total of
12821 annotations in the dataset. For all tests on the CAL500
dataset, we used 10-fold non-stratified cross-validation.

The Magnatagatune [3] dataset is a collection of 25863
clips of Western music, provided by Magnatune.com and
FreeSound.org, that span the genres of classical, new age,
electronica, rock, pop, world music, jazz, blues, heavy metal,

Thttp://marsyas.info

and punk. Annotations for the files were collected via the
TagATune game-with-a-purpose [], in which two players were
asked each to annotate a clip in their own words and then
to guess, based on the other player’s annotations, whether
or not they had been listening to the same song. Tags from
this game are applied in the dataset if more than two people
independently used the same tag for the same clip. For our
experiments, we used 25860 of the songs, discarding any that
were shorter than 30 seconds. In the resulting dataset, each
song clip is annotated with a minimum of 0 and a maximum
of 17 tags. Each tag has a minimum of 23 and a maximum
of 4581 examples for a total of 89382 annotations in the
collection. For all tests on the Magnatagatune dataset which
is much bigger, we used 2-fold non-stratified cross validation.

C. Classification Algorithms

In our experiments we have tested various combination of
classification algorithms in different stacking configurations.
The different configurations are characterized by how the
multi-label problem is mapped to single-label problems, the
type of classifier used, the output of the classifiers (categorical
or probabilistic), and whether stacking was used or not. The
following notation is used in the descriptions: X is the set of
instances in a dataset; each instance is represented by an m
dimensional feature vector; x; is the feature vector of the ith
instance; x; ; is the value of the jth feature of the ¢th instance.

For all classifiers except the linear support vector machine
(SVM), we used the PT4 transformation method [16] in which
a classifier is trained for each tag, ¢, using all songs with that
that tag (X;) as positive examples and all songs without the
tag (X_;) as negative examples. For the linear SVM classifier
we utilize the PTS transformation method. Each multi-label
instance is replicated as multiple single-label instances and
then a multi-class linear SVM is trained using the one-against-
one approach in which binary classifiers for each pair of
tags are trained and their predictions are combined to form
the multi-class prediction. In order to obtain output class
probabilities we utilize the approach suggested by Platt [28].

A standard Naive Bayes (NB) approach is also considered.
A separate classifier is trained for each tag. For each di-
mension, j, of the feature space, two Gaussian distributions
are defined: g, ; is defined using the mean and variance of
dimension j in X;, and g—; ; is defined in the same way for
X_;. During prediction, the probability that ¢ applies document
x; is predicted as p, where:

V43

pP=——" 3)
max(pe, p-t)
pe = H 91,5 (i5) “)
j=1
Pt = [[-5 (xij))
j=1

A decision tree (C4.5) is constructed based on the classes ¢
(instances in X;) and —t (instances in X_;). For each node on
the tree, a count is kept of the number of ¢ instances and the

number of —t¢ instances that are assigned to that node or to its
children during training. The probability, p, of tag ¢ applying
to instance x;, is then determined by following the decision
tree as far as possible, and taking the ratio of ¢ instances to
—t instances that reached that node during training. A separate
decision tree is trained for every tag t.

A k nearest neighbours (k-NN) classifier (kK = 10 selected
empirically) is trained for every tag ¢ by memorizing each
instance in the training set as a point in R™, described by its
feature vector. The probability, p, of tag ¢ applying to instance
x; is then determined by finding k instances in the training
set such that the sum of their euclidean distances from x; is
a minimum. p is then equal to the fraction of those k training
instances that were from X;. The ML-kNN classifier [17]
differs from the plain kNN classifier only in that, for each
tag, the predicted probability of that tag applying is always
multiplied by the prior probability of that tag appearing in the
training dataset.

For all the classification configurations except SVM we
utilized the Mulan java library ? for multi-label learning which
is built on top of the well known Weka machine learning
software 3. The SVM approach is implemented in the Marsyas
audio framework and is based on the libsvm library *. Custom
software in Python was written to perform the experiments
and collect the evaluation results.

D. Evaluation

Evaluation of automatic tagging systems is not trivial. In
general the evaluation metrics used are generalizations of com-
monly used evaluation metrics for single-label classification.
A annotated “training” set of instances is used to “train” the
classifier and then used to “predict” the tags for a set of
instances in a ‘“test” set. We can also distinguish between
evaluation metrics that are based on a predicted discrete set of
tags (sometimes referred to as the annotation task) and ones
that are based on a predicted set of tag affinities/probabilities
(sometimes referred to as the ranking task) for each instance
in the testing set. A common approach is to treat any clas-
sification decision equally and simply count the number of
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) to derive well-known measures such
as precision, recall and F-measure. In the case of probabilistic
output multiple score thresholds can be considered as possible
boundaries for binarization in which case it is common to use
Receiver operating characteristics (ROC) curves [29]. An ROC
curve is a plot of the true positive rate as a function of the false
positive rate. The ROC curve can be summarized by the area
under curve (AUC-ROC) which can be found by integrating
the ROC curve and is upper bound by 1.0. Random guessing
in a retrieval task results in an AUC-ROC of 0.5. Different
tag annotation methods can have different operating point
characteristics in terms of the tradeoff between true positives
and false postives therefore in this paper we mainly use ROC

Zhttp://mulan.sourceforge.net
3http://www.cs.waikato.ac.nz/ml/weka
“http://www.csie.ntu.edu.tw/~cjlin/libsvm

TABLE 1 TABLE IV
CALS500: AVERAGE TAG AUC-ROC FOR DIFFERENT STACKING MAGNATAGATUNE: OVERALL AUC-ROC FOR DIFFERENT STACKING
CONFIGURATIONS CONFIGURATIONS
Stage2 Stage2
Stage 1 None | C4.5 kNN | MLENN NB SVM Stage 1 None | C4.5 kENN | MLENN NB SVM
RND 0.487 0.359 0.461 0.382 0.441 0.407 C4.5 0.741 0.788 0.419 0.850 0.742 -
RND(Priors) | 0.424 | 0.366 | 0.457 0.382 0.438 | 0414 kNN 0.757 | 0.695 | 0.718 0.883 0.849 -
C4.5 0.404 | 0.444 | 0.558 0.523 0.570 - MLENN | 0.892 | 0.695 | 0.715 0.881 0.847 -
kNN 0.568 | 0.392 | 0.558 0.480 0.626 | 0.579 NB 0.762 | 0.760 | 0.712 0.874 0.666 | 0.913
MLAENN 0.475 | 0.384 | 0.553 0.482 0.597 | 0.554 SVM 0.923 | 0.666 | 0.761 0.894 0.743 | 0.933
NB 0.619 | 0.443 | 0.565 0.486 0.545 | 0.567
SVM 0.592 | 0.433 | 0.584 0.504 0.619 | 0.638
ORACLE - 0.902 | 0.850 0.780 0.931 | 0.981
1.0 R ——— ===
TABLE II
MAGNATAGATUNE: AVERAGE TAG AUC-ROC FOR DIFFERENT STACKING 08 .-
CONFIGURATIONS
Stage?2 £ 06 s R
Stage I | None | C45 | kNN | MLEKNN | NB | SVM g ~, e
C45 0.347 | 0325 | 0.297 0412 | 0.718 B g o220 | - - random-svm (0.407)
kNN 0535 | 0.397 | 0504 | 0478 | 0790 | - 3 04 2" | 77 random-NaiveBayes (0.441)
MLANN | 0520 | 0407 | 0.499 | 0478 | 0789 | -) Pl et
NB 0.728 | 0.344 | 0.480 0.459 0.613 | 0.793 ’ gl (0.592)
SVM 0.819 | 0.399 | 0.541 0.520 0.701 | 0.839 0.2 i KNN-NaiveBayes (0.626)
- - svm-svm (0.638)
- - oracle-svm (0.981)
%0 02 0.4 06 08 10
and AUC-ROC to investigate the performance of stacking felse positive rate
configurations as they are more general. A final complication
Fig. 2. Receiving Operating Characteristic Curves for different stacking

is that calculating metrics over the entire set of tags can be
misleading as good performance on “popular” tags that appear
in many instances will dominate but typically a more balanced
response where all tags are considered is desired. In order
to address this concern we also consider evaluation metrics
averaged across tags. Finally it is important to note that in
most cases evaluation metrics based on annotated ground truth
underestimate what the true performance of the system would
be if evaluated by humans [12]. The reason is that frequently,
predicted tags that humans would consider applicable are not
present in the ground truth and therefore evaluated as mistakes.

E. Results

Tables LILIILIV show the AUC-ROC values for different
stacking configurations. Both the overall as well as the values
avearaged across tags are considered. As a baseline we con-
sider the performance of a model that randomly assigns tags
(RND) as well as a model that randomly assigns tags using the
prior probabilities of each tag in the training set (RND(priors)).
The first column in each table shows the type of classifier used

TABLE III
CAL500: OVERALL AUC-ROC FOR DIFFERENT STACKING
CONFIGURATIONS
Stage2
Stage 1 None C4.5 kNN | MLENN NB SVM
RND(Priors) | 0.600 | 0.525 | 0.749 0.808 0.747 | 0.810
RND 0.496 | 0.516 | 0.755 0.808 0.764 | 0.808
C4.5 0.662 | 0.627 | 0.777 0.808 0.756 -
kNN 0.802 | 0.594 | 0.795 0.825 0.743 | 0.833
MLENN 0.828 | 0.573 | 0.793 0.825 0.738 | 0.828
NB 0.667 | 0.657 | 0.795 0.825 0.661 | 0.831
SVM 0.844 | 0.593 | 0.810 0.835 0.697 | 0.852
ORACLE - 0.995 | 0.942 0.967 0.942 | 0.972

confgigurations

for stage 1 and the column headers correspond to the type
of stacking classifiers used for stage 2. The first column of
AUC-ROC results corresponds to no stacking. Entries in bold
indicate stacking configurations in which stacking improves
the results compared to just using stage 1. For some entries
marked with a - we encountered numerical problems in our
simulations and we were not able to obtain results. We have
been investigating the cause but have not been able to find
it although we suspect it has to do with insufficient variance
in the stage 1 affinities interfering with the training of stage
2 SVM classifiers. In order to establish an upper bound
to stacking performance we also consider an “ORACLE”
configuration in which the actual ground truth labels in the
test set are used as input to a stacking classifier trained on
the ground truth labels of the training set. As can be seen
the random configurations perform close to the theoretical 0.5
AUC-ROC for random single tag classification except in the
overall AUC-ROC where the use of random priors improves
the result slightly (0.6). Also, one can see that stacking using
the theoretical “ORACLE” upper bound performs very well,
close to the ideal AUC-ROC of 1 of perfect classification;
difference between the training and testing set used in cross-
validation account for the deviation. The combination of the
particular features and classifiers are closer to the lower bound
than the upper bound which indicates there is a lot of progress
that can be made with discovering new features for music
tagging. However, several of the stage 1 classifiers peform
better than random and, in general, stacking has a positive
effect on performance, as can be seen by all the bold entries.

Notice that stacking also benefits if the tags have been assigned
randomly in stage 1 as the relations between tags are still
modeled based on the ground truth in training set (i.e the
prior probabilities and joint probabilities among the tags). This
influence of stacking in the RND configurations is only in the
overall AUC-ROC.

One somewhat unexpected result was the excellent perfor-
mance of the Naive Bayes classifiers as a stacking stage 2
classifier. We believe this might be due to the better fit of
the NB classifier to a probabilistic formulation. Given the
simplicity and speed of training it can be an easy addition
to existing music and more generally multimedia tagging
systems. In both the average and overall AUC-ROC the
combination SVM for both stage 1 and stage 2 resulted in the
best results for both datasets. The use of prior probabilities in
ML-KNN compared to KNN shows an effect in the overall
configuration but does not make any difference in the average
over tags. Figure 2 shows some representative ROC curves for
the best two stacking configurations in CAL500 as well as the
upper and lower bounds of random and oracle tag ranking.

V. CONCLUSION

In this paper we established conections and correspondances
between the literature in multimedia information retrieval,
multi-label classification and stacking which is a technique
in which the output of a classification stage is used as
input to a subsequent classification stage. We investigated the
performance of stacking using a variety of classifier configu-
rations using two dataset for music tag annotation. Based on
experimental results stacking seems to be a valid strategy for
improving the performance of music tag annotation systems.
The simple Naive Bayes classifier and the Support Vector
Machine (SVM) seem to be the best performing choices both
as stage 1 classifiers and as stacking classifiers in stage 2. The
effect of stacking is more noticeable when the performance
in stage 1 is poor. There are many directions for future
work that we plan to investigate. We would like to contrast
stacking both in terms of annotation and retrieval performance
and computational requirements with ranking approaches as
well as other alternatives to multi-label classification such as
AdaBoost. MH and AdaBoost.MR as well as topic models.
The performance of stacking in the presence of synonyms
and hierarchical relations can also be investigated by creating
synthetic examples exhibiting such effects. We also believe
stacking should also be applicable to other areas of multimedia
information retrieval such as image and video annotation and
plan to investigate this in the future.

REFERENCES

[1] P. Lamere, “Social tagging and music information retrieval,” Journal of
New Music Research, vol. 37, no. 2, pp. 101-114, 2008.

[2] L. von Ahn, “Games with a purpose,” Computer, vol. 39, no. 6, pp.
92-94, June 2006.

[3]1 E. L. M. Law, L. V. Ahn, R. B. Dannenberg, and M. Crawford,
“Tagatune: A game for music and sound annotation,” in Proc. Int. Conf.
on Music Information Retrieval (ISMIR), 2007.

[4] A. Schein, A. Popescul, L. Ungar, and D. Pennock, “Methods and
metrics for cold-start recommendations,” in Proc. ACM SIGIR Conf.
on Research and Development in Information Retrieval, 2002.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

B. Whitman and R. Rifkin, “Musical query-by-description as a multi-
class learning problem,” in In Proc. IEEE Multimedia Signal Processing
Conf. (MMSP), 2002, pp. 153-156.

R. Shapire and Y. Singer, “Boostexter: A boosting-based system for text
categorization,” Machine Learning, vol. 39, no. 2/3, pp. 135-68, 2000.
D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green, in Adv. in Neural
Information Processing Systems.

D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic
annotation and retrieval of music and sound effects,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 16, no. 2, pp.
467-476, 2008.

S. J. Downie, “The music information retrieval evaluation exchange
(2005-2007): A window into music information retrieval research,”
Acoustical Science and Technology, vol. 29, no. 4, pp. 247-255, 2008.
S. R. Ness, A. Theocharis, G. Tzanetakis, and L. G. Martins, “Improving
automatic music tag annotation using stacked generalization of proba-
bilistic svm outputs,” in Proc. ACM Multimedia, 2009.

K. Seyerlehner, Widmer, G. Schedl, and P. M. Knees, “Automatic music
tag classification basd on block level features,” in Sound and Music
Computing, 2010.

E. Law, B. Settles, and T. Mitchell, “Learning to tag from open vocab-
ulary labels,” in Principles of Data Mining and Knowledge Discovery,
2010, pp. 211-226.

P. C. M. Hoffman, D. Blei, “Easy as cba: A simple probabilistic model
for tagging music,” in Proc. Int. Conf. on Music Information Retrieval
(ISMIR), 2009.

H.-Y. Lo, J.-C. Wang, H.-M. Wang, and S.-D. Lin, “Cost-sensitive
stacking for audio tag annotation and retrieval,” in Proc. Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), 2011.
Y.Panagakis and C.Kotropoulos, “Automatic music tagging via
parafac2,” in Proc. IEEE Int. Conf. Audio, Speech and Signal Processing,
2011, pp. 481-484.

G. Tsoumakas and I. Katakis, “Multi label classification: An overview,”
Int. Journal of Data Warehouse and Mining, vol. 3, no. 3, pp. 1-13,
2007.

M.-L. Zhang and Z.-H. Zhou, “A k-nearest neighbor based algorithm
for multi-label classification.” in Granular Computing, X. Hu, Q. Liu,
A. Skowron, T. Y. Lin, R. R. Yager, and B. Zhang, Eds. IEEE, 2005,
pp. 718-721.

C.-F. Tsai and C. Hung, “Automatically annotating images with key-
words: A review of image annotation systems,” Recent Patents on
Computer Science, vol. 1, pp. 55-68, 2008.

G. Toderici, H. Aradhye, M. Pasca, L. Sbaiz, and J. Yagnik, “Finding
meaning on youtube: Tag recommendation and category discovery,” in
CVPR’10, 2010.

D. Grangier and S. Bengio, “A discriminative kernel-based approach to
rank images from text queries,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 30, no. 8, pp. 1371-1384, 2008.

D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, pp.
241-259, 1992.

A. Berenzweig, D. P. W. Ellis, and S. Lawrence, “Anchor space for
classification and similarity measurement of music,” in Proc. of Int.
Conf. on Multimedia and Expo (ICME), 2003, pp. 29-32.

M. Slaney, “Semantic-audio retrieval,” in Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), 2002.

S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled
classification,” in Proc. Pacific-Asia Conf. on Knowledge Discovery and
Data Mining, 2004.

G. Heitz, S. Gould, A. Saxena, and D. Koller, “Cascaded classification
models: Combining models for holistic scene understanding,” in Proc.
Advances in Neural Information Processing Systems (NIPS), 2009.

M. Mandel and D. Ellis, “Song-level features and support vector ma-
chines for music classification,” in Proc. Int. Conf. on Music Information
Retrieval (ISMIR), 2005.

G. Tzanetakis and P. Cook, “Musical Genre Classification of Audio
Signals,” IEEE Trans. on Speech and Audio Processing, vol. 10, no. 5,
Jul. 2002.

J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” in Advances in Large
Margin Classifiers. MIT Press, 1999, pp. 61-74.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861-874, June 2006.

