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ABSTRACT

Music listeners frequently use words to describe music. Per-
sonalized music recommendation systems such as Last.fm
and Pandora rely on manual annotations (tags) as a mecha-
nism for querying and navigating large music collections. A
well-known issue in such recommendation systems is known
as the cold-start problem: it is not possible to recommend
new songs/tracks until those songs/tracks have been man-
ually annotated. Automatic tag annotation based on con-
tent analysis is a potential solution to this problem and has
recently been gaining attention. We describe how stacked
generalization can be used to improve the performance of a
state-of-the-art automatic tag annotation system for music
based on audio content analysis and report results on two
publicly available datasets.
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1. INTRODUCTION

Music information retrieval (MIR) is a research area that
has been rapidly gaining momentum due to the widespread
digital distribution of music. A central goal of MIR is to
create systems that can efficiently and effectively retrieve
songs from large databases of music content. There are var-
ious approaches to specifying queries. We focus on the ap-
proach used by personalized music recommendation systems
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such as Last.fm and Pandora, which is, essentially, to repre-
sent each track as a collection of manually annotated words
(tags). Social tags are a key part of “Web 2.0” technologies
and have become an important aspect of recommendation
systems. Any semantically meaningful word can be used for
this purpose—tags for music can represent a variety of dif-
ferent concepts including genre, instrumentation, emotions,
geographic origins, social conditions etc. Games with a pur-
pose are an exciting new way of collecting tags for a variety
of multimedia annotation tasks [20] by harnessing volunteer
users who perform the annotation as part of casual gaming.

A well-known issue in tag-based recommendation systems
is known as the cold-start problem [12]: it is not possible
to recommend new songs/tracks until those songs/tracks
have acquired enough manual annotations. Recently, games-
with-a-purpose have been shown to be an effective way of
acquiring reliable tags for large number of multimedia items.
Automatic tag annotation based on content analysis can be
used to complement manual tag annotation.

In this paper we focus on automatic tag annotation of mu-
sic tracks in which the music retrieval system learns a rela-
tionship between acoustic features and words from a dataset
of annotated audio tracks. The resulting trained model can
retrieve audio tracks based on lists of tags and can annotate
unlabelled audio tracks with tags. Such systems can be used
to both annotate novel audio content as well as retrieve rel-
evant audio tracks from a database of unannotated tracks
given a text-based query [18]. Similar approaches have been
explored in the context of automatic image annotation [15].

Automatic audio annotation can be formulated as a multi-
label classification problem. We describe a state-of-the-art
automatic tag annotation system for music that utilizes au-
dio feature extraction, the output of which is used to train a
Support Vector Machine (SVM) with probabilistic class out-
puts, where each class corresponds to a tag. Stacked general-
izaton is used in order to train a second level SVM classifier
that exploits possible correlations between tags. We show
that this significantly improves annotation performance on
two publicly available music datasets with verified human
annotations. There is no consistent terminology for stacked
generalization and several other terms for similar approaches
have been used in the literature of automatic content-based
multimedia annotation and classification. In the following
section we attempt to collect these different variations us-
ing common terminology and describe the differences and
similarities between them and to the proposed approach.



2. RELATED WORK

There is a large body of work in automatic image an-
notation [15]. Early work in audio annotation for music
used web-documents associated with an artist for the text
annotations [21]. There are several different approaches to
collecting tags for music, each with advantages and disad-
vantages [17]. For example the Magnatagatune dataset used
in this paper has been collected using TagATune [7], a game
with a purpose. There has been a recent increase in inter-
est in automatic audio tag annotation for individual music
tracks as evidenced by the corresponding task in the Music
Information Retrieval Evaluation Exchange (MIREX) [3], an
annual event where different MIR algorithms are evaluated
on a variety of tasks. One of the best performing systems
used a probabilistic model with one tag-level distribution
over the audio feature space for each word in the vocabu-
lary [18]. The parameters of a tag-level Gaussian Mixture
Model (GMM) are estimated using audio content from a
set of training tracks that are positively associated with the
tag. This system had the best performance in MIREX 2008
and is used below as a baseline for comparison with our pro-
posed approach. Like our system, the output for a particular
track is a tag affinity vector that can be thresholded for tag
annotation. Support Vector Machines have been used with
song-level features for automatic tag classification trained at
different granularities (track, album, artist) [9]. Unlike our
approach, individual SVM are trained separately for each
tag using positive and negative samples. Another possibil-
ity is to use boosting of classifiers for automatic generation
of social tags for music recommendation [4]. A classifier
specifically designed for multi-label classification was used
to classify music into emotions [14]. Unlike in our approach,
these systems have no second stage to model relations be-
tween tags is employed.

Audio tag annotation can viewed as a problem of multi-
label classification [16]. Our approach is to use a distri-
bution classifier (a linear SVM with probabilistic outputs
[11]) that can output a distribution of affinities (or prob-
abilities) for each tag. This affinity vector can either be
used directly for indexing and retrieval, or thresholded to
obtain a binary vector with predicted tag associations for
the particular track. The resulting affinity vector is fed into
a second stage SVM classifier in order to better capture the
relations between tags. This approach is a specialized case of
stacking generalization [22], a method for the combination
of multiple classifiers. Similar ideas have appeared in the
literature under other terms such as anchor-based classifica-
tion [1] and semantic space retrieval [13], but not necessarily
in a multi-label tag annotation context. The general idea is
to map the content-based features to a more semantically
meaningful space, frequently utilizing external information
such as web resources. Stacked generalization has been used
for discriminative methods for multi-label classification in
text retrieval [6] but using a vector of binary predictions
for each label to model dependencies between them. The
most closely relevant work is applied in improving multi-
label analysis of music titles again using a second stage clas-
sifier on the binary predictions of the first stage classifiers
which the authors term the correction approach [10]. To the
best of our knowledge this is the first time the probabilistic
output of SVM classifiers is used for multiple label classi-
fication for automatic audio annotation and possibly more
generally content-based multimedia annotation.

3. AUTOMATIC TAG ANNOTATION

Figure 3.1 shows the flow of information for our proposed
audio annotation system. For each track in the audio collec-
tion a feature vector is calculated based on the audio con-
tent. As each track might be annotated by multiple tags
the feature vector is fed into the multi-class Audio SVM
several times with different tags. Once all tracks have been
processed, the linear SVM is trained and a tag affinity out-
put vector (TAV) is calculated. The TAV can be used di-
rectly for retrieval and storage or converted to a tag binary
vector (TBV) by some thresholding method. When stacked
generalization is used, the tag affinity vector (TAV) is used
as a semantic feature vector for a second round of train-
ing over the tracks using an affinity SVM which produces
a stacked tag affinity vector (STAV) and a stacked tag bi-
nary vector (STBYV). The resulting predicted affinity and
binary vector can be used to evaluate the effectiveness of the
retrieval system using metrics such as Area under Receiver
Operating Characteristic Curve (AROC) for the TAV and
information retrieval measures for the TBV.

3.1 Problem Formulation

We begin by considering a vocabulary V' that consists
of |W/| unique words and that each “word” refers to a se-
mantic concept, for example “techno”, “rock”, “hardcore” or
“ambient”. The goal of annotation is the find a set W =
w1, ..., wa of A words that are semantically meaningful and
describe a query audio track s,. The process of retrieval con-
sists of ordering a set of songs S = s1,...,sr when one is
given a list of query words W,. If we describe each song as an
annotation vector y = (y1,...,yv|) where y; > 0 if w; has
a semantic association with the audio track, and y; = 0 if it
does not. These y; are proportional to the strength of the
semantic association and are thus called semantic weights.
We then map these semantic weights to the range {0, 1} and
interpret them as the class labels. We can then represent a
song s as X = x1,...,xr of T real-valued feature vectors,
with each vector z; representing audio features that have
been extracted from a short section of the song. The data
set D that we use is a collection of pairs of tracks and an-
notations D = (X1,11),...,(X|p|,¥D))-

Automatic audio tag annotation can be viewed as a spe-
cial case of multi-label classification. Traditional single-label
classification is concerned with learning from a set of exam-
ples that are associated with a single label [ from a set of
disjoint labels L, |L| > 1. If |L| = 2, then the learning prob-
lem is called binary classification, while if |L| > 2 then it
is called a multi-class classification problem. In multi-label
classification the examples are associated with a set of la-
bels Y C L. In addition, and in contrast to other multi-label
classification problems, tags are relatively sparse and there-
fore there is an imbalance between positive and negative
examples for each tag.

3.2 Audio Feature Extraction and Stacked Clas-
sification

Each audio track is represented as a single feature vector.
Even though much more elaborate audio track representa-
tions have been proposed in the literature we like the sim-
plicity of machine learning and similarity calculation using
single feature vectors per audio clip. It has been shown that
such song-level features perform quite well [8].

The features used are Spectral Centroid, Roll-Off, Flux
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Figure 1: System flow diagram

and Mel-Frequency Cepstral Coefficients (MFCC). To cap-
ture the feature we compute a running mean and standard
deviation over the past M frames:

m®(t) = mean[®(t — M + 1), .., D(t)] (1)
s®(t) = std[®(t — M +1),..,(t)] (2)

where ®(t) is the original feature vector. Notice that the
dynamics features are computed at the same rate as the
original feature vector but depend on the past M frames (e.g.
M=40, corresponding approximately to a so-called “texture
window” of 1 second). This results in a feature vector of 32
dimensions at the same rate as the original 16-dimensional
one. The sequence of feature vectors is collapsed into a
single feature vector representing the entire audio clip by
taking again the mean and standard deviation across the
30 seconds (the sequence of dynamics features) resulting in
the final 64-dimensional feature vector per audio clip. A
more detailed description of the features can be found in
Tzanetakis and Cook [19].

For training the support vector machine classifier the fea-
ture vectors (one per audio track) are normalized so that
the minimum of each feature is 0 and the maximum in 1
(Max/Min Normalization). The Marsyas audio processing
framework (http://marsyas.sness.net) was used for the
computation of the features. Both stages of classification
(audio and stacked affinity) utilize a multi-class Support
Vector Machine implemented as a collection of binary one-
versus all discriminative classifiers. The libSVM software
package is used for training and classification [2].

4. EXPERIMENTS

We tested the system on two publicly available audio data-
sets. The Computer Audition Lab 500 (CAL500) [18] dataset
is a selection of 500 Western popular songs recorded by 500
different artists, from between 1958 and 2008. Each song
is manually annotated with an appropriate subset of 135
total tags (including positive and negative tags), including
29 instruments, 22 vocal characteristics, 36 genres, 18 emo-
tions, 15 preferred listening scenarios, and 15 concepts such
as tempo and sound quality. Each song has at least 3 anno-
tations, with a total of 1708 annotations in the collection.
The Magnatagatune [7] dataset is a collection of 21642 songs
and 188 tags. The songs were provided by Magnatune.com

Accuracy | F-measure | AROC | AROC

Tag Tag Tag Clip

BTL 0.842 0.258 0.68 0.78
Audio SVM 0.865 0.394 0.78 0.86
Affinity SVM 0.882 0.498 0.85 0.89

Table 1: CAL500 Evaluation Metrics

Table 2: Magnatagatune : Audio and Affinity SVM

- Global evaluation metrics
Precision | Recall | Accuracy | F-Score

Audio SVM 0.307 | 0.315 0.969 0.311
Affinity SVM 0.351 | 0.354 0.971 0.353

and FreeSound.org, and span the genres of classical, new age,
electronica, rock, pop, world music, jazz, blues, heavy metal,
and punk. Annotations for the files were collected via the
TagATune game-with-a-purpose, in which two players were
asked each to annotate a song. The players were then shown
each other’s annotations and asked to guess whether or not
they had been listening to the same song.

The results generated by the SVM algorithm are in the
form of an affinity matrix, with one dimension representing
all the songs in the collection, and one dimension repre-
senting the affinity of a particular tag for that song. This
affinity matrix can be compared to a similarly constructed
ground truth matrix via the Receiver Operating Character-
istic (ROC) curve [5], which creates a curve by iteratively
changing a cut-off level and plotting the resulting values. We
can then integrate this curve to obtain the Area under Re-
ceiver Operating Characteristic curve (AROC). The values
of AROC vary between 0 and 1, with larger values signify-
ing better classifier performance. Precision, recall, accuracy
and F-measure are also calculated in the standard way. We
report these measures over both the entire (global) binary
matrix as well as seperately for each tag and then averaged
across tags. The per-tag average accuracy is a better mea-
sure as it is not biased by popular tags.

Table 1 shows various evaluation metrics comparing the
performance of the best performing system in MIREX 2008
(LTB) [18]. To calculate these numbers, we obtained from
the authors the predicted affinity matrix associating songs
and tags for CAL500. The second line of the table shows
the performance of the audio-based SVM system using song-
level features. The third line shows the improvement in per-
formance using the stacked generalization where the input to
the second level classifier is the affinity vector predicted by
the first level classifier. The same thresholding was applied
in all cases. The threshold for each tag was chosen such that
the number of testing songs associated with a given tag is
proportional to the frequency in which that tag was applied
to the training songs. All the results were obtained using
2-fold cross-validation and were not significantly different
than using the training set for testing. This is expected
given the challenging nature of multiple-label classification
which makes over-fitting to the training data more unlikely.

Table 2 shows the results for both audio and stacked gen-
eralization using probabilistic SVM outputs for the Mag-
natagatune dataset and all tags. We believe this is the first
time results are published for this dataset. The global eval-
uation metrics are biased towards popular tags, so can be
misleading. As this dataset has many tags, we explore us-



# Tags | Precision | Recall | Accuracy | F-Score
20 0.417 | 0.688 0.856 0.516

30 0.345 | 0.669 0.862 0.452

40 0.370 0.381 0.910 0.375

50 0.328 | 0.337 0.919 0.332

100 0.189 | 0.195 0.947 0.192

all (188) 0.127 | 0.130 0.969 0.129

Table 3: Magnatagatune :
evaluation metrics

Audio SVM - Per-tag

# Tags | Precision | Recall | Accuracy | F-Score
20 0.418 | 0.691 0.856 0.518

30 0.346 | 0.671 0.862 0.453

40 0.394 | 0.397 0.914 0.395

50 0.369 | 0.372 0.923 0.371

100 0.259 | 0.262 0.951 0.260

all (188) 0.184 | 0.186 0.971 0.185

Table 4: Magnatagatune :
evaulation metrics

Affinity SVM - Per-tag

ing different number of tags for training the classifier. For
example “30” means that the 30 most popular tags were
used to train the classifier. Tables 3 and 4 show similar re-
sults by averaging the evaluation metrics across tags. This
way tags that are not popular are as important as popu-
lar tags in terms of being predicted correctly. As can be
seen, stacked generalization of probabilistic SVM outputs
improves all per-tag evaluation metrics especially when all
tags are considered. This is expected, as it can capture tag
relations even among tags that might not be represented
enough for accurate audio-based classification.

5. CONCLUSIONS

Stacked generalization of the probabilistic outputs of a
Support Vector Machine classifier can be used to improve
the performance of automatic audio tag annotation. The
scheme is straightforward to implement and provides signif-
icant improvements over one stage classification using a vari-
ety of standard evaluation measures in two publicly available
datasets. We believe that a similar approach could be used
for other tasks such as automatic image annotation.

6. REFERENCES

[1] A. Berenzweig, D. P. W. Ellis, and S. Lawrence.
Anchor space for classification and similarity
measurement of music. In Proc. of Int. Conf. on
Multimedia and Expo (ICME), pages 29-32, 2003.

[2] C. Chang and C. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[3] S. J. Downie. The music information retrieval
evaluation exchange (2005-2007): A window into
music information retrieval research. Acoustical
Science and Technology, 29(4):247-255, 2008.

[4] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green.
Automatic generation of social tags for music
recommendation. In Adv. in Neural Information
Processing Systems, volume 20, 2007.

[5] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861-874, June 2006.

[6] S. Godbole and S. Sarawagi. Discriminative methods
for multi-labeled classification. In Proc. Pacific-Asia
Conf. on Knowledge Discovery and Data Mining, 2004.

[7] E. L. M. Law, L. V. Ahn, R. B. Dannenberg, and
M. Crawford. Tagatune: A game for music and sound
annotation. In Proc. Int. Conf. on Music Information
Retrieval (ISMIR), 2007.

[8] M. Mandel and D. Ellis. Song-level features and
support vector machines for music classification. In
Proc. Int. Conf. on Music Information Retrieval
(ISMIR), 2005.

[9] M. Mandel and D. Ellis. Multiple-instance learning for
music information retrieval. In Proc. Int. Conf. on
Music Information Retrieval (ISMIR), 2008.

[10] F. Pachet and P. Roy. Improving multilabel analysis of
music titles: A large-scale validation of the correction
approach. Audio, Speech, and Language Processing,
IEEE Transactions on, 17(2):335-343, 2009.

[11] J. C. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In Advances in Large Margin Classifiers,
pages 61-74. MIT Press, 1999.

[12] A. Schein, A. Popescul, L. Ungar, and D. Pennock.
Methods and metrics for cold-start recommendations.
In Proc. ACM SIGIR Conf. on Research and
Development in Information Retrieval, 2002.

[13] M. Slaney. Mixtures of probability experts for audio
retrieval and indexing. In Multimedia and Expo, 2002.
ICME °02. Proc. 2002 IEEE Int. Conf. on, volume 1,
pages 345-348 vol.1, 2002.

[14] K. Trohidis, G. Tsoumakas, G. Kalliris, and
I. Vlahavas. Multilabel classification of music into
emotions. In Proc. Int. Conf. on Music Information
Retrieval (ISMIR), 2008.

[15] C.-F. Tsai and C. Hung. Automatically annotating
images with keywords: A review of image annotation
systems. Recent Patents on Computer Science,
1:55-68, 2008.

[16] G. Tsoumakas and I. Katakis. Multi label
classification: An overview. Int. Journal of Data
Warehouse and Mining, 3(3):1-13, 2007.

[17] D. Turnbull, L. Barrington, and G. Lanckriet. Five
approaches to collecting tags for music. In Proc. Int.
Conf. on Music Information Retrieval (ISMIR), 2008.

[18] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Semantic annotation and retrieval of
music and sound effects. Audio, Speech, and Language
Processing, IEEE Transactions on, 16(2):467-476.

[19] G. Tzanetakis and P. Cook. Musical Genre
Classification of Audio Signals. IEEE Trans. on
Speech and Audio Processing, 10(5), July 2002.

[20] L. von Ahn. Games with a purpose. Computer,
39(6):92-94, June 2006.

[21] B. Whitman and R. Rifkin. Musical
query-by-description as a multiclass learning problem.
In In Proc. IEEE Multimedia Signal Processing Conf.
(MMSP), pages 153-156, 2002.

[22] D. H. Wolpert. Stacked generalization. Neural
Networks, 5:241-259, 1992.



